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SUMMARY

Gaussian elimination is a canonical linear algebra procedure for solving linear systems of equations. In
the last few years, the algorithm has received a lot of attention in an attempt to improve its parallel
performance. This article surveys recent developments in parallel implementations of Gaussian elimination
for shared memory architecture. Five different flavors are investigated. Three of them are based on different
strategies for pivoting: partial pivoting, incremental pivoting, and tournament pivoting. The fourth one
replaces pivoting with the Partial Random Butterfly Transformation, and finally, an implementation without
pivoting is used as a performance baseline. The technique of iterative refinement is applied to recover
numerical accuracy when necessary. All parallel implementations are produced using dynamic, superscalar,
runtime scheduling and tile matrix layout. Results on two multisocket multicore systems are presented.
Performance and numerical accuracy is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Gaussian elimination has a long history that can be traced back some 2000 years [1]. Today, dense
systems of linear equations have become a critical cornerstone for some of the most compute
intensive applications. A sampling of domains using dense linear equations are fusion reactor mod-
eling [2], aircraft design [3], acoustic scattering [4], antenna design, and radar cross-section studies
[5]. For instance, simulating fusion reactors generates dense systems that exceed half a million
unknowns, solved using LU factorization [6]. Many dense linear systems arise from the solution
of boundary integral equations via boundary element methods [7], variously called the method
of moments in electromagnetics [8], and the panel method in fluid dynamics [9]. These methods
replace a sparse three-dimensional problem ofO.n3/ unknowns with a dense two-dimensional prob-
lem of O.n2/ unknowns. Any improvement in the time to solution for dense linear systems has a
direct impact on the execution time of these applications.

1.1. Motivation

The aim of this article is to give in-depth treatment to both performance and numerical stabil-
ity of various pivoting strategies that have emerged over the past few years to cope with the
need for increased parallelism in the face of the paradigm shifting switch to multicore hardware
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[10]. Rather than focusing on multiple factorizations and performance across multiple hardware
architectures [11], we switch our focus to multiple pivoting strategies and provide uniform treat-
ment for each, while maintaining sufficient hardware variability over shared-memory systems
to increase the meaningful impact of our results. No distributed environment is considered in
this study.

The stability of LU is strongly tied to the growth factor [12], � D maxi;j juij j=maxi;j jaij j. Ever
since the probabilistic properties of partial pivoting were established [13], the community has fully
embraced the method, despite the high upper bound on the growth factor that it can theoretically
incur: 2n�1 growth versus a much more acceptable O.n1=2C1=4 logn/ growth provided by complete
pivoting [12]. Probabilistically, partial pivoting achieves an average growth factor of n2=3. No-
pivoting LU has an unbounded growth factor, but probabilistically, an average growth of n3=2 has
been proven [14], which led to including it in this survey. However, complete lack of any pivoting
strategy is discouraged for practical applications.

1.2. Related work

In this paper, we evaluate five LU pivoting schemes: partial pivoting, incremental pivoting, tourna-
ment pivoting, the Partial Random Butterfly Transformation, and no-pivoting. A summary of each
is given here; further details are given in Section 2.

The partial pivoting code that we evaluate is based on a parallel panel factorization that uses a
recursive formulation of LU [15, 16]. This recent implementation was introduced to address the
bottleneck of the panel computation [17, 18] and has been successfully applied to matrix inversion
[19]. However, it should not be confused with a globally recursive implementation based on column-
cyclic distribution [20]. Neither is it similar to a nonrecursive parallelization effort [21] that focuses
only on a cache efficient implementation of the existing level 1 basic linear algebra subroutines
(BLAS) kernels.

Incremental pivoting [22, 23] has its origins in pairwise pivoting [24], which is related to an
updating LU algorithm for out-of-core computations [25], where blocking of computations is per-
formed for better performance. Incremental pivoting uses a pairwise treatment of tiles and, as a
consequence, reduces dependencies between tasks, which aids the parallelism that has become so
important with the proliferation of multicore hardware. However, it causes the magnitude of pivot
elements to increase substantially, rendering the factorization numerically less stable [22, 26, 27].

The tournament pivoting technique originated in communication-avoiding LU, which was ini-
tially introduced for distributed memory [28, 29] and later adapted to shared memory [30]. The main
design goal for this pivoting scheme is to attain the minimum bounds on the amount of data commu-
nicated and the number of messages exchanged between the processors. To achieve these bounds,
it minimizes the communication that occurs during the panel factorization by performing O.n2/
extra computations, leaving the highest order computational complexity term, 2

3
n3, unchanged. In

terms of stability, the best known bound for communication-avoiding LU’s growth factor increases
exponentially with the amount of parallelism, but in experience, it behaves similarly to partial
pivoting.

A probabilistic technique called the Partial Random Butterfly Transformation (PRBT) is an
alternative to pivoting and may, in a sense, be considered a preconditioning step that renders
pivoting unnecessary. It was originally proposed by Parker [31] and then made practical by Baboulin
et al. [32] with adaptations that limited the recursion depth without compromising the numerical
properties of the method.

Another pivoting strategy recently introduced by Khabou et al. [33] uses rank revealing QR
to choose pivot rows, which are then factored using Gaussian elimination. This method has been
shown to have a smaller growth factor than partial pivoting. Unfortunately, we do not yet have an
implementation to test.

A similar study was published before [11], but it was mostly focused on performance across a
wide range of hardware architectures. It featured results for the main three one-sided factorization
schemes: Cholesky, QR, and LU. No algorithmic variants for a particular method were considered.
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1.3. Original contribution

The unique contribution of this survey is in implementing and comparing all the algorithms using
the same framework, the same data layout, and the same set of parallel layout translation routines, as
well as the same runtime scheduling system, as described in Section 3. Our results in Section 4 offer
a level of insight into the trade-offs of the different methods that one could not reach by comparing
published data for different implementations in different environments.

2. ALGORITHMS

We start with an overview of each of the LU pivoting schemes that we evaluate. Familiarity with the
BLAS is assumed. Briefly, level 1 BLAS haveO.n/ work and data, level 2 BLAS haveO.n2/ work
and data, while level 3 BLAS have O.n3/ work on O.n2/ data, making level 3 BLAS operations
significantly more efficient because of the increased computation-to-memory-access ratio.

A summary of the floating point operations (flops) and growth factors for each algorithm is given
in Table I. For comparison, we also include complete pivoting in Table I, though it is not imple-
mented in our tests. Note that because of differences in dynamic parallelism and kernel efficiency,
flops is only a gross indicator of performance. The experiments given in Section 4 yield more
meaningful comparisons.

2.1. Partial pivoting

The LAPACK block LU factorization is the main point of reference here, and the LAPACK nam-
ing convention is followed. (The initial ‘D’ in names denotes double precision routines.) The LU
factorization of a matrix A has the form

PA D LU;

where L is a unit lower triangular matrix, U is an upper triangular matrix, and P is a permutation
matrix. The LAPACK algorithm proceeds in the following steps: Initially, a set of nb columns (the
panel) is factored, and a pivoting pattern is produced (implemented by the DGETF2 routine). Then,
the elementary transformations, resulting from the panel factorization, are applied in a block fashion
to the remaining part of the matrix (the trailing submatrix). This involves swapping up to nb rows of
the trailing submatrix (DLASWP), according to the pivoting pattern, application of a triangular solve
with multiple right-hand sides to the top nb rows of the trailing submatrix (DTRSM), and finally,
application of matrix multiplication of the form Aij  Aij � Aik � Akj (DGEMM), where Aik is
the panel without the top nb rows, Akj is the top nb rows of the trailing submatrix, and Aij is the

Table I. Summary of floating point operations (add, multiply, divide), floating point comparisons, best
known growth factor bound, and average case growth factor.

Growth factor Avg. growth
Flops Comparisons bound factor

Complete pivoting [13] 2
3n
3 � 1

2n
2 C 5

6n O.n3/ < Cn1=2C1=4 logn n1=2

Partial pivoting [13] 2
3n
3 � 1

2n
2 C 5

6n
1
2n
2 � 1

2n 2n�1 n2=3

Incremental pivoting 2
3n
3
�

1C ib
2nb

�
CO.n2/ 1

2n
2 � 1

2n 4n�1 n or > n

[13, 22, 34]

Tournament 2
3n
3 C nbn2 CO.n/ 1

2n
2 CO.prnbn/ < 2nH 1:5n2=3

pivoting [34]

PRBT [32] 2
3n
3 � 1

2n
2 C 5

6nC 5dn2 None Unbounded n3=2

No pivoting [14] 2
3n
3 � 1

2n
2 C 5

6n None Unbounded n3=2

Differences in flops compared with partial pivoting are in bold.
PRBT, Partial Random Butterfly Transformation.
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Figure 1. The block LU factorization (level 3 basic linear algebra subroutines algorithm of LAPACK).

trailing submatrix without the top nb rows. Then, the procedure is applied repeatedly, descending
down the diagonal of the matrix (Figure 1). The block algorithm is described in detail in Section
2.6.3 of the book by Demmel [35].

Instead of the level 2 BLAS panel factorization (DGETF2) used in LAPACK, we use a recursive
partial pivoting panel factorization, which uses level 3 BLAS operations. For a panel of k columns,
the algorithm recursively factors the left k=2 columns, updates the right k=2 columns with DLASWP,
DTRSM, and DGEMM, then recursively factors the right k=2 columns, and finally, applies swaps to
the left k=2 columns with DLASWP. The recursion terminates at a single column, where it simply
searches for the maximum pivot, swaps elements, and scales the column by the pivot. Parallelism is
introduced by splitting the panel into p block rows, which are assigned to different processors.

2.2. Incremental pivoting

The most performance-limiting aspect of Gaussian elimination with partial pivoting is the panel
factorization operation. First, it is an inefficient operation, usually based on a sequence of calls to
level 2 BLAS. Second, it introduces synchronization, by locking an entire panel of the matrix at
a time. Therefore, it is desirable to split the panel factorization into a number of smaller, finer-
granularity operations, which is the basic premise of the incremental pivoting implementation, also
known in the literature as the tile LU factorization.

In this algorithm, instead of factoring the panel one column at a time, the panel is factored one tile
at a time. The operation proceeds as follows: First, the diagonal tile is factored, using the standard
LU factorization procedure. Then, the factored tile is combined with the tile directly below it and
factored. Then, the refactored diagonal tile is combined with the next tile and factored again. The
algorithm descends down the panel until the bottom of the matrix is reached. At each step, the
standard partial pivoting procedure is applied to the tiles being factored. Also, at each step, all
the tiles to the right of the panel are updated with the elementary transformations resulting from
the panel operations (Figure 2). This way of pivoting is basically the idea of pairwise pivoting
applied at the level of tiles, rather than individual elements. The main benefit comes from the fact
that updates of the trailing submatrix can proceed alongside panel factorizations, leading to a very
efficient parallel execution, where multiple steps of the algorithm are smoothly pipelined.

A straight-forward implementation of incremental pivoting incurs more floating point operations
than partial pivoting. To reduce this additional cost, a second level of blocking, called inner blocking,
is used within each tile [22, 23]. The total cost to factor an n � n matrix is

2

3
n3
�
1C

ib

2nb

�
CO.n2/;
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Figure 2. Incremental LU factorization.

where nb is the tile size and ib is the inner blocking size. A small value for ib decreases the flops
but may hurt the efficiency of level 3 BLAS operations, so nb and ib should be chosen to offer the
best compromise between extra operations and BLAS efficiency.

With nb D 1, incremental pivoting reduces to pairwise pivoting; hence, the stability of incre-
mental pivoting is assumed to be the same as pairwise pivoting [23]. For pairwise pivoting, the
growth factor bound is 4n�1. Trefethen and Schreiber [13] observed an average growth factor of
n for n 6 1024, but more recently, Grigori et al. [34] observed an average growth factor > n for
n > 4096, leaving the question of stability open for large n.

2.3. Tournament pivoting

Classic approaches to the panel factorization with partial pivoting communicate asymptotically
more than the established lower bounds [28]. The basic idea of communication avoiding LU is
to minimize communication by replacing the pivot search performed at each column with a block
reduction of the all the pivots together. This is carried out thanks to a new pivoting strategy referred
to as tournament pivoting, which performs extra computations and is shown to be stable in prac-
tice. It factors the panel in two steps. First, using a tournament selection, it identifies rows that can
be used as good pivots for the factorization of the whole panel. Second, it swaps the selected pivot
rows to the top of the panel and then factors the entire panel without pivoting. With this strategy, the
panel is efficiently parallelized, and the communication is probably minimized.

Figure 3 presents the first step of tournament pivoting for a panel W using a binary tree for the
reduction operation. First, the panel is partitioned into pr blocks, that is, W D ŒW00; W10; : : : ;

Wpr�1;0
�
, where Wij represents the block owned by thread i at step j of the reduction operation.

Figure 3 shows an example with pr D 4.
At the first step of the reduction operation, each thread, i , applies Gaussian elimination with

partial pivoting to its block,Wi0, then the resulting permutation matrix Pi0 is applied to the original,
unfactored block Wi0, and the first nb rows of the permuted block Pi0Wi0 are selected as pivot
candidates. These first pivot candidates represent the leaves of the reduction tree. At each node of
the tree, the pivot candidates of two child nodes are merged on top of each other, and Gaussian
elimination with partial pivoting is applied on the merged block. The resulting permutation matrix
is then applied on the original, unfactored merged block, and the first nb rows are selected as new
pivot candidates. By using a binary tree, this step is repeated log2 pr times. The pivots obtained at
the root of the tree are then considered to be good pivots for the whole panel. Once these pivots are
permuted to the top of the panel, each thread applies Gaussian elimination without partial pivoting
to its block, Wi0.

The example presented in Figure 3 uses a binary tree with two tiles reduced together at each
level, but any reduction tree can be used, depending on the underlying architecture. The tournament
pivoting implementation in PLASMA, used for experiments in this paper, reduces four tiles each
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Figure 3. Example of tournament pivoting with pr D 4 processors, using a binary tree for the reduction
operation.

level. This number of tiles is chosen because it gives a good ratio of kernel efficiency over one single
core, relative to the time spent to perform the factorization of the subset.

For tournament pivoting, the best growth factor bound proved so far is 2nH , where H is the
height of the reduction tree. With a binary tree, H D log2 pr , so the bound is pnr . However, Grigori
et al. [34] have never observed a growth factor as large as 2n�1, even for pathological cases such as
the Wilkinson matrix, and they conjecture that the upper bound is the same as partial pivoting, 2n�1.
They observed an average growth factor of 1:5n2=3, independent of p. Our experiments in Section 4
confirm that tournament pivoting is as stable as partial pivoting in practice.

2.4. Random Butterfly Transform

As an alternative to pivoting, the PRBT preconditions the matrix as Ar D W >AV , such that with
probability close to 1, pivoting is unnecessary. This technique was proposed by Parker [31] and later
adapted by Baboulin et al. [32] to reduce the computational cost of the transformation. An n � n
butterfly matrix is defined as

B.n/ D
1
p
2

�
R �S
R �S

�
;

whereR and S are random diagonal, nonsingular matrices.W and V are recursive butterfly matrices
of depth d , defined by

W .n;d/ D

2
666664
B
.n=2d�1/
1 0 : : : 0

0
: : :

:::
:::

: : : 0

0 : : : 0 B
.n=2d�1/

2d�1

3
777775 � � � � � B

.n/:

We use a depth d D 2, previously found to be sufficient in most cases [32]. Because each R and
S is diagonal, W and V can be stored as n � d arrays. Because of the regular sparsity pattern,
multiplying an m � n matrix by W and V is an efficient, O.dmn/ operation.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



GAUSSIAN ELIMINATION SURVEY

After applying the PRBT, Gaussian elimination without pivoting is used to obtain the solution, as
indicated in Algorithm 1.

Algorithm 1 Solving Ax D b using PRBT.

1: Ar D W
>AV

2: factor Ar D LU without pivoting
3: y D U n.Ln.W >b//
4: x D Vy

While the randomization reduces the need for pivoting, the lack of pivoting can still be unstable,
so we use iterative refinement to reduce the potential for instability. The cost of pivoting is thus
avoided, at the expense of applying the PRBT and iterative refinement. As with no-pivoting LU,
the growth factor remains unbounded. This can easily be seen by letting A D W �>BV �1, where
the first pivot, b00, is zero. However, probabilistically no-pivoting LU (and hence PRBT) has been
shown to have an average growth factor of n3=2 [14].

2.5. No pivoting

This implementation of Gaussian elimination completely abandons pivoting. This can be carried out
very rarely in practice without risking serious numerical consequences or even a complete break-
down of the algorithm if a zero is encountered on the diagonal. Here, the implementation serves only
as a performance baseline. Dropping pivoting increases performance for two reasons. First, the over-
head of swapping matrix rows disappears. Second, the level of parallelism dramatically increases,
because the panel operations now become parallel, and can also be pipelined with the updates to the
trailing submatrix.

2.6. Iterative refinement

Iterative refinement is an iterative method proposed by Wilkinson [36] to improve the accuracy
of numerical solutions to systems of linear equations. When solving a linear system Ax D b,
the computed solution may deviate from the exact solution because of the presence of roundoff
errors. Starting with the initial solution, iterative refinement computes a sequence of solutions that
converges to the exact solution when certain assumptions are met (Algorithm 2).

Algorithm 2 Iterative refinement using MATLAB™ backslash notation.
1: repeat
2: r D b � Ax
3: ´ D U n.LnP r/
4: x D x C ´
5: until x is ‘accurate enough’

As Demmel points out [35, p. 60], the iterative refinement process is equivalent to Newton’s
method applied to f .x/ D b � Ax. If the computation was performed exactly, the exact solution
would be produced in one step.

Iterative refinement introduces a memory overhead. Normally, in the process of factorization, the
original matrix A is overwritten with the L and U factors. However, in the refinement process, the
original matrix is required to compute the residual. Therefore, application of iterative refinement
doubles the memory requirement of the algorithm.

3. IMPLEMENTATION

We now turn to the specifics of our implementation, including the data layout, parallel layout
transformation routines, and dynamic runtime scheduling system.
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Figure 4. The column-column rectangular block (CCRB) matrix layout.

3.1. Tile layout

For best performance, it is beneficial to couple the algorithm with a data layout that matches the
processing pattern. For tile algorithms, the corresponding layout is the tile layout developed by
Gustavson [37] and shown in Figure 4. The matrix is arranged in square submatrices, called tiles,
where each tile occupies a continuous region of memory. The particular type of layout used here is
referred to as column-column rectangular block (CCRB). In this flavor of the tile layout, tiles follow
the column-major order and elements within tiles follow the column-major order. The same applies
to the blocks A11; A21; A12, and A22.

From the standpoint of serial execution, tile layout minimizes conflict cache misses, because
two different memory locations within the same tile cannot be mapped to the same set of a set-
associative cache. The same applies to the translation look-aside buffer misses. In the context of
parallel execution, tile layout minimizes the probability of false sharing, which is only possible at
the beginning and end of the continuous memory region occupied by each tile, and can easily be
eliminated altogether, if the matrix is aligned to cache lines and tiles are divisible by the cache line
size. Tile layout is also beneficial for prefetching, which in the case of strided memory access is
likely to generate useless memory traffic.

It is only fair to assume that most users assemble their matrices in the standard column-major
layout, common to Fortran and LAPACK, rather than in our tiled layout. Therefore, for our experi-
ments, the matrix always starts in column-major layout and is then translated into tile layout, and the
results translated back to column-major layout. The overhead of translating the matrix from column-
major layout to the CCRB layout and back is always included in the timing. This also provides a
fair comparison with MKL’s LU factorization (DGETRF), which takes the matrix in column-major
layout. Because the entire matrix occupies a contiguous region of memory, translation between
tile layout and column-major layout can be done in place, without changing the memory footprint.
Gustavson et al. [38] devised a collection of routines for performing this translation in a parallel and
cache efficient manner. It is important to observe that the layout translation routines have a broader
impact in forming the basis for a fast transposition operation. The codes are distributed as part of
the PLASMA library.

3.2. Dynamic scheduling

In order to exploit fine-grained parallelism to its fullest, efficient multithreading mechanisms have
to be designed where data dependencies are preserved, that is, data hazards are prevented. This has
been performed for both the simpler one-sided factorizations, such as Cholesky, LU, and QR [11,
17, 22, 39, 40], as well as the more complicated two-sided factorizations, such as the reductions
to band bidiagonal and band tridiagonal form [41–44]. The process of constructing such sched-
ules through manipulation of loop indexes and enforcing them by progress tables is tedious and
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error-prone. Using a runtime dataflow scheduler is a good alternative. A superscalar scheduler is
used here.

Superscalar schedulers, such as SMPSs [45], StarPU [46], SuperMatrix [47], and QUeuing And
Runtime for Kernels (QUARK) [48] exploit multithreaded parallelism in a similar way as superscalar
processors exploit instruction level parallelism. Scheduling proceeds under the constraints of data
hazards: Read after Write, Write after Read, and Write after Write. In the context of multithread-
ing, superscalar scheduling is a way of automatically parallelizing serial code. The programmer is
responsible for encapsulating the work in side-effect-free functions (parallel tasks) and providing
directionality of their parameters (input, output, and input-and-output), and the scheduling is left
to the runtime. For example, Algorithm 3 demonstrates how incremental pivoting inserts each task
with its dependencies into the scheduler. The only difference compared with a serial implementation
is inserting tasks into a scheduler rather than directly executing tasks. Scheduling is carried out by
conceptually exploring the directed acyclic graph (DAG), or task graph, of the problem. An example
DAG is shown in Figure 5 for a 3� 3 tile matrix. The scheduler may execute tasks in any order that
respects the dependencies shown in the DAG; for instance, the three tasks in the second level may
be executed simultaneously. This eliminates the artificial synchronization after each BLAS opera-
tion, common to traditional fork-join parallelism as in LAPACK. In practice, the DAG is never built
entirely but instead is explored in a sliding window fashion. The superscalar scheduler used here is
the QUARK [48] system, developed at the University of Tennessee.

Algorithm 3 Incremental pivoting. Aij refers to tile i; j . Directionality of each parameter is
indicated by (in) or (in, out).
Require: matrix A with mt � nt tiles

1: for k D 0 to mt � 1 do
2: insert task: factor Akk (in, out)
3: for j D k C 1 to nt � 1 do
4: insert task: update Akj (in, out) using Akk (in)
5: end for
6: for i D k C 1 to mt � 1 do

7: insert task: factor

�
Akk
Aik

�
(in, out)

8: for j D k C 1 to nt � 1 do
9: insert task: update Aij (in, out) using

Aik (in) and Akj (in)
10: end for
11: end for
12: end for

4. EXPERIMENTAL RESULTS

4.1. Hardware and software

The experiments were run on an Intel system with 16 cores and an AMD system with 48 cores. The
Intel system has two sockets with eight-core Intel Sandy Bridge CPUs clocked at 2.6 GHz, with a
theoretical peak of 16 cores � 2:6 GHz � 8 ops per cycle ' 333 Gflop/s in double precision arith-
metic. The AMD system has eight sockets with six-core AMD Istanbul CPUs clocked at 2.8 GHz,
with a theoretical peak of 48 cores � 2:8 GHz � 4 ops per cycle ' 538 Gflop/s in double precision
arithmetic.

All presented LU codes were built using the PLASMA framework, relying on the CCRB tile
layout and the QUARK dynamic scheduler. The GCC 4.1.2 compiler was used for compiling the
software stack, and Intel MKL (Composer XE 2013) was used to provide an optimized implementa-
tion of serial BLAS. On both systems, to avoid important variation in NUMA effects, the PLASMA
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Figure 5. Directed acyclic graph for incremental pivoting of matrix with 3 � 3 tiles. Arrows show
dependencies between tasks. Colors match those in Algorithm 3.

framework relies on the HwLoc library [49] to bind efficiently the threads over the multiple sockets,
and all experiments are run with the numactl command to distribute the data in a round-robin fash-
ion over the memory banks of the machine. When the number of threads is smaller than the machine
size, the memory is only dispatched on the associated memory banks and not on all the machine.

4.2. Performance

We now study the performance of our implementations on square random matrices in double real
precision, and compare their performance with that of the LU factorization in MKL (DGETRF).
While the absolute performance is different for single, single-complex, and double-complex preci-
sions, we have observed trends similar to double precision for all precisions. In all cases, the matrix
is initially in column-major layout, and we include the conversion to and from tiled layout in the
time. Because each of our implementations uses a different pivoting strategy, for a fair performance
comparison, we ran iterative refinement with all the algorithms to achieve the same level of accu-
racy. Namely, for MKL, we used the MKL iterative refinement routine DGERFS, while for the tile
algorithms, we implemented a tiled iterative refinement with the same stopping criteria as that in
DGERFS, that is, the iteration terminates when one of the following three criteria is satisfied:

1. the component-wise backward error, maxi jri j= .jAj jbxj C jbj/i , is less than or equal to ..nC
1/ � sfmin/=eps, where r D Abx � b is the residual vector andbx is the computed solution, eps
is the relative machine precision, and sfmin is the smallest value such that 1=sfmin does not
overflow,

2. the component-wise backward error is not reduced by half, or
3. the number of iterations is equal to ten.

For all of our experiments, iterative refinement converged in less than 10 iterations. We observed
that even with partial pivoting, it requires a couple of iterations to satisfy this stopping crite-
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ria (Section 4.3). Furthermore, in many cases, DGERFS of MKL did not scale as well as our
implementation. We suspect this is due to the need to compute jAj jbxj C jbj at each iteration.

The performance of our implementations is sensitive to the tile size nb . Hence, for each matrix
dimension n on a different number of cores, we studied the performance of each algorithm with
the tile sizes of nb D 80, 160, 240, 320, and 400. We observed that on 48 cores of our AMD
machine, the performance is especially sensitive to the tile size, and we tried the additional tile sizes
of nb D 340, 360, and 380. In addition, the performance of our incremental pivoting is sensitive to
the inner blocking size, and we tried using the block sizes of ib D 10, 20, and 40 for both nb D 80
and 160; ib D 10, 20, 30, 40, 60, and 80 for nb D 240; and ib D 10, 20, 40, and 80 for both
nb D 320 and 400. Figures 6 and 7 show the performance obtained using the tile and block sizes that
obtained the highest performance. For all algorithms, we compute the effective Gflop/s using the
flops for partial pivoting given in Table I. For the solve with iterative refinement, we also include a
pair of forward and backward substitutions, 2n2. For the tile algorithms, we included the data layout
conversion time as a part of the solution time. We summarize our findings in the succeeding texts:

� PRBT with the default transformation depth of two added only a small overhead over no-
pivoting in all the test cases.
� In comparison with other pivoting strategies, incremental pivoting could exploit a large number

of cores more effectively. As a result, when the performance is not dominated by the trailing
submatrix updates (e.g., for a small matrix dimension on 48 cores), it obtained performance
that is close to that of no-pivoting. However, for a large matrix dimension, because of the
extra computation and special kernels required by incremental pivoting to update the trailing
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(c) Factorization alone, using 48 cores (d) Factorization and solve with iterative refinement, using 48 cores

Figure 6. (a) Factorization alone, using six cores, (b) factorization and solve with iterative refinement, using
six cores, (c) factorization alone, using 48 cores, and (d) factorization and solve with iterative refinement,

using 48 cores. Asymptotic performance comparison of LU factorization algorithms on AMD Opteron.
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(a) Factorization alone, using 8 cores (b) Factorization and solve with iterativere finement, using 8 cores
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(c) Factorization alone, using16 cores (d) Factorization and solve with iterative refinement, using 16 cores

Figure 7. (a) Factorization alone, using eight cores, (b) factorization and solve with iterative refinement,
using eight cores, (c) factorization alone, using 16 cores, and (d) factorization and solve with iterative
refinement, using 16 cores. Asymptotic performance comparison of LU factorization algorithms on Intel

Sandy Bridge.

submatrix, its performance was lower than that of the partial or tournament pivoting LU that
uses level 3 BLAS DGEMM for their trailing submatrix updates.
� In comparison with MKL, our partial pivoting and tournament pivoting LU could effectively

utilize a larger number of cores, as seen for medium-sized matrices on multiple sockets. This
is probably a result of the extra parallelism attained by using a superscalar scheduler, as well
as parallel panel factorizations.
� In this shared-memory environment, partial pivoting outperformed tournament pivoting in all

cases. However, this observation should not be extrapolated to distributed-memory machines,
where the communication latency becomes a significant part of the performance. There, the
reduced communication in tournament pivoting may be more favorable.
� MKL performed well for large matrices, where the trailing submatrix update dominates the per-

formance. Note the combined cost for of all the panels is O.nbn2/, compared with O.n3/ for
the trailing submatrix update. Moreover, on a single socket, MKL outperformed no-pivoting for
a large enough matrix dimension. This could be because a tiled implementation loses efficiency
because of the smaller BLAS kernels used during its trailing submatrix updates.
� For small matrices, iterative refinement incurred a significant overhead, which diminishes for

large matrices as the O.n3/ factorization cost dominates the O.n2/ solve cost. The refinement
overhead was particularly large for MKL, which we suspect is due to jAj jbxj C jbj not being
effectively parallelized in MKL.
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(a) AMD Opteron (m = n = 4000).
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(b) Intel Sandy Bridge (m = n = 2000).

Figure 8. (a) AMD Opteron .m D n D 4000/ and (b) Intel Sandy Bridge .m D n D 2000/. Strong scaling
comparison of LU factorization algorithms.

Finally, Figure 8 shows the strong scaling of our implementations.‡ In these experiments, for each
algorithm, we used the tile size that obtained the best performance on the 48 or 16 cores of the AMD
or Intel machine, respectively. Because the matrix dimensions were relatively small in this study, in
order to obtain high performance, it becomes imperative to exploit parallelism as much as possible.
In particular, PRBT and incremental pivoting obtained excellent parallel efficiency.

4.3. Accuracy

To study the numerical behavior of our implementations, we used the synthetic matrices from two
recent papers [32, 34]. We tested all these matrices, but here present only a representative subset that
demonstrate the numerical performance of the pivoting strategies. We also conducted the numerical
experiments using all the matrix dimensions used in Section 4.2, but here show only the results
of n D 30000, which represent the numerical performance trends of the pivoting strategies for all
other matrix dimensions. Table II shows some properties of these test matrices and the stability
results of using partial pivoting. In the table, the second through the sixth test matrices are from
the paper by Grigori et al. [34], where the first two have relatively small condition numbers, while
the rest are more ill-conditioned. The last three matrices are from the paper by Baboulin et al. [32],
where the last test matrix gfpp is one of the pathological matrices that exhibits an exponential
growth factor using partial pivoting. Because the condition number of the gfpp matrix increases
rapidly with the matrix dimension, we used the matrix dimension of m D 1000 for our study.
Finally, incremental and tournament pivoting exhibit different numerical behavior using different
tile sizes. For the numerical results presented here, we used the tile and block sizes that obtain the
best performance on the 16-core Intel Sandy Bridge. All the results are in double real precision.

Figure 9(a) shows the component-wise backward errors, maxi jri j=.jAjjbxj+jbj/i , at each step of
iterative refinement. For these experiments, the right-hand side b is chosen such that the entries of
the exact solution x are uniformly distributed random numbers in the range of Œ�0:5; 0:5�. In the
succeeding texts, we summarize our findings:

� For all the test matrices, tournament pivoting obtained initial backward errors comparable with
those of partial pivoting.
� No-pivoting was unstable for five of the test matrices (i.e., ris, fiedler, orthog, {�1; 1},

and gfpp). For the rest of the test matrices, the initial backward errors of no-pivoting were

‡ Using the default transformation depth of two, our current implementation of PRBT assumes the matrix dimension to
be a multiple of four times the tile size. Hence, for these experiments, in order to use the same block sizes as those
used for no-pivoting, we set the matrix dimensions to bem D 1920 andm D 3840 on the AMD and Intel machines,
respectively, for PRBT.
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Figure 9. (a) Component-wise relative backward error and (b) norm-wise relative forward error. Numerical
accuracy of LU factorization algorithms, showing error before refinement (top point of each line) and after
each refinement iteration (subsequent points). Number of iterations is given at bottom of (a); ‘F’ indicates

failure (e.g., overflow).

significantly greater than those of partial pivoting but were improved after a few refinement
iterations.
� Incremental pivoting failed for the fiedler, orthog, and gfpp matrices. For other test

matrices, its backward errors were greater than those of partial pivoting but were improved to
be of the same order as those of partial pivoting after a few refinement iterations. The only
exception was with the ris matrix, where the refinement stagnated before reaching an accu-
racy similar to that of partial pivoting. In each column of the ris matrix, entries with smaller
magnitudes are closer to the diagonal (i.e., aij D 0:5=.n � i � j C 1:5/). As a result, the
permutation matrix P of partial pivoting has ones on the antidiagonal.
� When no-pivoting was successful, its backward errors were similar to those of PRBT. On the

other hand, PRBT was more stable than no-pivoting, being able to obtain small backward errors
for the fiedler, {�1; 1}, and gfpp matrices.
� Partial pivoting was not stable for the pathological matrix gfpp. On the other hand, PRBT

randomizes the original structure of the matrix and was able to compute the solution to a
reasonable accuracy. It is also possible to construct pathological test matrices where partial
pivoting is unstable while tournament pivoting is stable and vice versa [34].

Figure 9(b) shows the relative forward error norms of our implementations, which were computed
as kx �bxk1 =kxk1. We observed similar trends in the convergence of the forward error norms as
in that of the backward errors. One difference was with the orthog test matrix, where iterative
refinement could not adequately improve the forward errors of incremental pivoting and PRBT.
Also, even though the backward errors of the ris test matrix were on the order of machine epsilon
with partial and tournament pivoting, their relative forward errors were O.1/ because of the large
condition number.

5. CONCLUSIONS

When implemented well – using a recursive panel factorization, tile data layout, and dynamic
scheduling – the canonical LU factorization with partial (row) pivoting is a numerically robust
method that attains near the peak achievable performance given by LU factorization without
pivoting.

In our experiments on synthetic matrices, tournament pivoting turned out to be as stable as partial
pivoting, confirming results by its inventors. It also proved to be fairly fast. However, it failed to
outperform partial pivoting, which can be attributed to the low communication cost in a shared-
memory environment. The method has much more potential for distributed memory systems, where
communication matters much more.
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Incremental pivoting showed the worst asymptotic performance because of the use of exotic ker-
nels, instead of the GEMM kernel. On the other hand, it showed strong scaling properties on small
matrices almost as good as PRBT and no-pivoting. It is harder to make strong claims about its
numerical properties. Its initial residual is usually worse than that of partial and tournament pivot-
ing, but in most cases, the accuracy is quickly recovered in iterative refinement. It can fail in some
situations, when partial and tournament pivoting prevail.

Partial Random Butterfly Transformation is the fastest method, both asymptotically and in terms
of strong scaling, because it adds only a small overhead of preprocessing and postprocessing to the
time of factorization without pivoting. Similar to incremental pivoting, it produces a high initial
residual, but the accuracy can be recovered via iterative refinement. It can also fail in some situations
when partial pivoting and tournament pivoting prevail.

And finally, it can be observed that iterative refinement is a powerful mechanism of minimizing
the backward error, which in most cases translates to minimizing the forward error.

6. FUTURE DIRECTIONS

Although we believe that the wide range of synthetic matrices with different properties gives a good
understanding of the numerical properties of the different flavors of LU factorization, ultimately, it
would be invaluable to make such comparisons using matrices coming from real world applications,
such as plasma burning or radar cross-section analysis.

While the comparison given here gives good insight into the performance properties of the dif-
ferent LU factorization algorithms using two relatively large shared memory systems, by today’s
standards, we acknowledge that the picture can be very different in a distributed memory envi-
ronment. Ultimately, we would like to produce a similar comparison using distributed memory
systems.
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