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Abstract—Graphics processing units (GPUs) brought huge
performance improvements in the scientific and numerical
fields. We present an efficient hybrid CPU/GPU approach
that is portable, dynamically and efficiently balances the
workload between the CPUs and the GPUs, and avoids data
transfer bottlenecks that are frequently present in numerical
algorithms. Our approach determines the amount of initial
work to assign to the CPUs before the execution, and then
dynamically balances workloads during the execution. Then,
we present a theoretical model to guide the choice of the
initial amount of work for the CPUs. The validation of our
model allows our approach to self-adapt on any architecture
using the manufacturer’s characteristics of the underlying
machine. We illustrate our method for the LU factorization.
For this case, we show that the use of our approach combined
with a communication avoiding LU algorithm is efficient. For
example, our experiments on a 24 cores AMD opteron 6172
show that by adding one GPU (Tesla S2050) we accelerate
LU up to 2.4× compared to the corresponding routine in
MKL using 24 cores. The comparisons with MAGMA also
show significant improvements.

Keywords-LU factorization, hybrid CPU/GPU programming,
synchronization avoiding.

I. INTRODUCTION

General purpose graphics processing units (GPGPUs)
brought a huge performance acceleration to the scientific and
numerical fields. Since their appearance, many applications
were successfully readapted in order to take into account
the advantages that GPGPUs offer. However, even if the
GPUs’ effectiveness is well established, their efficient usage
depends on the ability to fully exploit them in a heteroge-
neous CPU/GPU environment while doing a good balancing
of workload.

The LU factorization is one of the most important al-
gorithms in the scientific and numerical fields, and one of
the most difficult to parallelize because of its irregular data
movements introduced by the pivoting. Its block version
partitions the matrix to factorize into blocks of columns,
and then factorizes each block of columns by steps. At each
step of the factorization a block of columns, referred to as a
panel, is factorized and the corresponding trailing submatrix
is updated. This decomposition allows to separate the panel
factorization (which is not efficiently parallelizable) and the
updates. These updates are based on matrix products, and

therefore can be performed by optimized Level 3 BLAS
[1] operations, which are easily parallelizable. The approach
used in MAGMA [3], a well known and optimized numerical
library in linear algebra for GPUs, is based on this principle.
It factorizes the panel on the CPUs and performs the update
of the trailing submatrices on the GPUs. This ensures
efficient updates and optimal use of the GPUs. However,
performing a prefixed amount of work on the CPUs (a
panel at each iteration), even when the power of the CPUs
available is comparable to that of the GPUs, is inefficient
because the performance of a panel factorization is data-
bound. Thus, the performance potential/scalability that is
expected when growing the number of CPUs, will be lost.
This lack of load balancing can therefore lead to strong
underutilization of the CPUs available.

We focus on the LU factorization because of the con-
straints related to the synchronization of the processes that
are involved during the panel factorization. For this case,
the load balancing problem has been well studied by several
authors [19], [18], [13], [17]. For most implementations, the
main idea is to determine empirically the amount of work
to assign to the different computational units, or perform
some necessary adjustments depending on the problem size
in order to keep CPUs busy. Unfortunately, these approaches
require high efforts for tuning. Also, they are difficult to
evaluate, and therefore not portable on a variety of architec-
tures. To our knowledge, none of these approaches propose
a realistic model to guide the load balancing between CPUs
and GPUs.

In this paper, we propose a new efficient and portable
approach that balances the load between the CPUs and the
GPUs in numerical algorithms. In particular, we developed
a theoretical model for determining the amount of work to
assign to each computational unit to ensure the scalability
of our algorithm. First, our approach determines the initial
amount of work to assign to the CPUs before the execution.
Then during the execution, a part of work is dynamically
transferred from the GPUs to the CPUs in order to maintain
load balance. The data transfers associated with this dy-
namic load balancing are asynchronous and overlapped with
computations. Our model and implementation self-adapts to
any architecture by using underlying machine characteristics,



and it does not require further tuning.
We use the LU factorization to illustrate our load balanc-

ing method, but we believe that our approach can be adapted
to several other algorithms in numerical linear algebra
such as the QR factorization, the SVD decomposition, and
Cholesky factorization. We propose to use CALU [6], [11],
[8], one of the algorithms recently introduced for the LU
factorization, which aims to minimize communications dur-
ing the factorization of the panel by doing some redundant
computations. There are two motivations of using CALU
to factorize the panel in our work: first, CALU allows an
efficient parallelization of the panel, which is suitable for
the CPUs in this hybrid approach; Second, we remove the
bottleneck from our prior work [4] where we did not obtain
expected improvements for square matrices by just replacing
the panel factorization in MAGMA by CALU while keeping
the rest of the code unchanged.

Our new approach removes the bottleneck in the standard
MAGMA implementation by keeping CPUs busy without
changing the panel size, but by giving more updates to
the CPUs asynchronously. We tested our approach on an
AMD opteron 6172 equipped with Tesla S2050 GPUs, an
AMD opteron 6180 equipped with Tesla 6180 GPUs, and an
Intel xeon E5-2670 equipped with Tesla M2090 GPUs. Our
implementation, tested on a single Tesla S2050 GPU with up
to 48 CPU cores, is multicore scalable. In particular, it is up
to 2× faster than MAGMA, and up to 1.9× faster than our
prior implementation. A use of a single Tesla S2050 GPU
accelerates the performance by 2.7× over the corresponding
CPU routines of MKL using the same number of cores.

The rest of this paper is organized as follows. In section II,
we briefly introduce the LU factorization, its implementation
in MAGMA, related work, and communication avoiding
algorithms. In section III, we present our new approach.
Then, in section IV, we present our simple and yet very
accurate model to guide the initial amount of work to
transfer to the CPUs before the factorization. In section
V, we present experimental results, we show the modeled
workload for underlying architecture, performance results,
and the scalability of our implementation. Finally, in section
VI, we give conclusions and future work directions.

II. BACKGROUND

A. LU factorization

The current standard for an LU factorization is the one
implemented in LAPACK [2]. This is the function GETRF,
prefixed with an S, D, C, or Z, representing the arithmetic
to be used (correspondingly single real, double real, sin-
gle complex, or double complex floating point arithmetic).
GETRF computes the LU factorization of a general M-by-N
matrix A using partial pivoting with row interchanges, which
is stable in practice. Moreover, the algorithm is known as
blocking, in a sense that a block of columns, referred to as
panel, is factored at a time. The transformations used during

the panel factorization are not applied immediately on the
trailing matrix (i.e., the rest of the matrix after the current
panel), but delayed and applied at once after the panel is
factored. Thus, the algorithm groups together a block of
inefficient (memory-bound) Level 2 BLAS transformations
and applies them at once as Level 3 BLAS updates, which
can be done very efficiently on current architectures.

B. Communication avoiding LU factorization

It is well known that hardware improvements in terms of
communications are very low compared to the ones in terms
of arithmetic operations. Based on these observations, a new
class of algorithm referred to as communication avoiding
algorithms [6], [11], whose main idea is to reduce commu-
nications by doing some redundant computations, have been
introduced. For LU factorization, a communication avoiding
algorithm LU (CALU) performs the panel factorization as a
block operation. This is because, classic algorithms as im-
plemented in ScaLAPACK for example, factorize the panel
column by column. Hence, pivoting requires communication
among processors participating in the operations for each
column. So, at least b logP messages are exchanged during
this step, where b is the number of columns in the panel
being factorized and P is the number of processors. CALU
introduces a new pivoting strategy referred to as TSLU,
which performs the panel factorization in two steps. First,
it identifies the good pivot at a reduced communication
cost and then applies the corresponding permutation matrix
to the panel. Second, it applies LU factorization without
partial pivoting on the panel. By using a binary tree for
a reduction operation through this approach, only logP
messages are exchanged, which is less than ScaLAPACK
number of messages with a factor of b. The algorithm is
well described in [11], [8]. Once a panel is factorized using
TSLU, the update of the trailing submatrix is updated as in
classic LU factorization.
CALU is shown to be stable in practice [11] and has been
adapted to distributed memories [11], [6] and multicore
environments [8], [7].

C. LU factorization implementation in MAGMA

MAGMA[3] is a well optimized numerical library which
implements several LAPACK routines for dense matrices.
The library takes advantage of the hybrid CPU/GPU pro-
gramming to achieve better performance. The key principle
lies in the optimal use of the GPUs in these routines. To do
so, the highly parallel part of each routine is identified and
scheduled on the GPUs, while the part with less parallelism
is scheduled on CPUs. For the LU factorization, it is shown
that the panel factorization is more suitable for the CPUs
than for the GPUs. What is implemented in MAGMA for
the LU factorization embraces this principle, the panel is
factorized on the CPUs using a multithreaded routine such
as dgetrf from the MKL vendor library[14], while the update



of the trailing submatrices is performed on the GPUs using
highly optimized kernels.

Figure 1 shows an example of execution of the dgetrf
routine as implemented in MAGMA. This example is
shown for a matrix decomposed into 5 block columns using
P processors and 1 GPU. The bars at the top represent
CPUs computations, while the bars at the bottom represent
GPU computations. Red and green bars show the part of the
matrix where current operations are performed. As shown
in the figure: at the first step (step 0), the CPUs factorize
the panel. At step 1, the factorized panel is transferred
from the CPUs to the GPU. At step 2, the first column of
the trailing submatrix is updated separately on the GPU
in order to enable the look-ahead. At step 3, the updated
single column of the previous step is transfered from the
GPU to the CPUs. This step makes available the next panel
factorization for the CPUs, and finally at step 4, the GPUs
update the rest of the trailing submatrix associated with the
current panel, while the CPUs factorize the next panel.
The same process is repeated from step 1 to 4 until the
matrix is entirely factorized.
We note that, at step 4, the CPUs are likely to finish their
computations very early because of the relatively small size
of the panel compared to the size of the trailing submatrix.
This early end of the CPUs work prevents inactivity on the
GPU, because the panel is likely to be ready when the GPU
finishes its computations, but it may result in important
inactivity for the CPUs.

Figure 1. Example of execution of magma dgetrf on a square matrix. The
matrix is partitioned into 5 x 5 blocs of columns.

D. Related work

The load balancing problem for hybrid CPU/GPU appli-
cations is well recognized in the literature and presents a
challenge because of the heterogeneity of the CPU/GPU sys-
tems. The approach used in MAGMA leads to optimal use
of the GPUs at the price of possible CPUs underutilization.
Based on this approach, the work performed by the CPUs is
relatively small to prevent GPUs idle time. The fact that this
can create load imbalance was identified by several authors
in the literature, and several approaches have been suggested
in order to solve the problem and improve performance. In
this section, we detail some of them. In particular, we focus
on the LU and QR factorizations.

To solve the possibility of load imbalance in the QR
factorization Volkov et al. [19], and more recently Yaohung
et al. [18], proposed an approach based on variable panel
block size. It consists of choosing an adapted block size for

the panel at each step of the factorization in order to keep
CPUs busy. The approach would have been optimal if the
CPUs and the GPUs ended their work simultaneously, but
this is not possible in general, as mentioned by Yaohung et
al. [18]. Instead, they merely search the largest panel size for
the CPUs for which the GPUs’ execution is not impacted.
The validation of the results is based on empirical tests.
Furthermore, if a large panel size is used in order to achieve
a good load balancing, an additional time due to bandwidth
limitations may be paid for transferring it to the GPUs. This
restriction represents an upper bound for the panel size.

In our previous work [4], we have evaluated the possibility
of replacing the standard panel factorization in MAGMA by
CALU, which is a more efficient approach. The idea behind
this implementation was to efficiently factorize the panel
and then slightly increase the panel block size to keep the
CPUs busy. Once the panel size is increased, it is split into
relatively small tasks in order to enable enough parallelism
for the whole set of cores participating in the operation. We
observed that this approach gave better results for tall and
skinny matrices involving the CPU/GPU, but unfortunately
the performance improvements for square matrices were not
significant.

Horton et al. [13] noted the ineffectiveness of using too
many threads for the panel factorization in the QR factor-
ization in MAGMA. To improve the efficiency of the CPUs,
they determine the optimal number of threads required for
the panel factorization, then they dedicate a fixed rightmost
part of the matrix to the remaining threads for the updates.
This approach introduces several new parameters which
appear further difficult to tune such as: the panel width,
the number of threads working on the panel, the size of
the rightmost part of the matrix dedicated to the remaining
threads and the inner block size of the panel. The author
suggests an approach based on extensive experiments to
compute the possible values of these parameters for a range
of matrices in order to reuse them later, which may require
up to two hours of computations as also mentioned by the
authors.

Song et al. [17] proposed an approach based on the
decomposition of the input matrix into tiles of size B. These
tiles are cyclically distributed to the GPUs in ScaLAPACK
fashion. A portion, Bh, of each tile is assigned to the CPUs.
First, they use a formula to determine Bh, and then they
simulate the execution of the routine (the QR or Cholesky
factorization) on a small number of tiles (e.g., 3 tiles in
practice) in order to readjust the value of Bh for the global
matrix. Another empirical search is required to determine the
tile size B which achieves best performance for the GPU
kernel.Such empirical experiments are required before the
execution of any of their routines.



III. ASYNCHRONOUS LU FACTORIZATION WITH GPU
ACCELERATORS

A. Method

Algorithm 1 describes our dynamically balanced
synchronization-avoiding LU factorization. A general
matrix A of size m × n is partitioned into blocks of
columns, and factored iteratively, similar to the block
LAPACK algorithm. To establish an initial load balance
between the CPUs and the GPU, A is split into two parts.
The first part formed with the first d block columns of A is
transfered to the CPUs, while the second part formed with
the remaining N − d block columns, where N represents
the number of block columns, remains on the GPU as
presented in figure 2. The input parameter d is determined
using our model that we describe in section IV. The first
part is further partitioned in a 2-dimensional (2D) way;
each block column is 1D partitioned into Pr blocks of
rows, where Pr is the number of CPU cores participating
in a panel factorization. The structure of the second part of
the matrix is kept unchanged.

Figure 2. Initial decomposition of the matrix in two parts. First part for
the CPUs and second for the GPUs.

This decomposition creates fine and coarse grain compu-
tational tasks, correspondingly in the first and second part
of A. There are two advantages for this decomposition.
First, the GPUs are massively parallel and can be used
efficiently on regular computations like the matrix-matrix
product updates in the second part of the matrix [15], [16];
while the CPUs can better handle (than the GPUs) less
parallel and irregular computations, and therefore are more
suitable for operations such as the panel factorizations (in
the first part). Second, the use of fine grain computational
tasks is associated with increased parallelism, while the use
of coarse grain tasks is associated with high efficiency. By
combining and properly scheduling both fine and coarse
grain tasks, we achieve balance and hardware efficiency;
the panel factorization (which is the critical path of the
algorithm) is fine grain partitioned in order to be accelerated
through parallelism, while the update of trailing submatrix
(which is the bulk of the computation) is coarse grain
partitioned in order to exploit the resources.
Before the factorization, d block columns of the matrix are
transfered (line 3 of the algorithm) from the GPU to a
workspace allocated on the CPUs. Then, for each step K of
the factorization, the algorithm proceeds as follows:Lines 5
to 7: A panel is decomposed into Pr tasks and each task is
inserted in the CPUs’ queue of tasks. The associated routine
is calu dgetrf which factorizes a portion of the panel and

then performs some reduction steps conducted by a binary
tree as described in [11], [8]; Line 8: The new factored panel
is asynchronously transfered to the GPU; Lines 9 and 10: A
dtrsm and a dgemm task on the coarse part of the matrix are
inserted in the GPU’s tasks queue. The associated routines
are gpu dtrsm and gpu dgemm, respectively; Line 11: A
new block column is asynchronously transfered to the CPU
to balance work; Lines 12 to 15: dtrsm and dgemm tasks
are inserted in the CPUs’ tasks queue. This is done for each
block column in the CPUs part. The associated routines are
respectively cpu dtrsm and cpu dgemm. At the end of the
factorization, the resulting matrix is stored entirely on the
GPU memory.

Algorithm 1 Asynchronous CALU
1: Input: m×n matrix dA, block size b, number of processors P = Pr ×Pc,

number of blocs for the CPU parts d
2: M = m/b,N = n/b
3: workspace: A = dA(1 : m, 1 : d ∗ b) /*part of the matrix for the CPUs*/
4: for K = 1 to N = n/b do
5: for I = 1 to Pr do
6: cpu insert task(calu dgetrf, A(K + I.M−K

Pr
: K + (I +

1).M−K
Pr

, K))
7: end for
8: gpu insert task(device setMatrix, A(K : M,K), dA(K : M,K))

/*Copy the factored panel from CPU to the GPU*/
9: gpu insert task(gpu dtrsm, A(K,K + d : N))

10: gpu insert task(gpu dgemm, A(K + 1 : M,K + d : N))
11: gpu insert task(device getMatrix, dA(K + 1 : M,K + d), A(K + 1 :

M,K + d)) /*Copy one column from the GPU to the CPU*/
12: for J = K to K + d do
13: cpu insert task(cpu dtrsm, A(K, J))
14: cpu insert task(cpu dgemm, A(K + 1 : M,J))
15: end for

16: end for

B. Scheduling

Our algorithm, as described above, creates and inserts
tasks in both a CPUs or GPU’ queue of tasks. These tasks
must be executed as soon as their data dependencies allow it.
We use dynamic scheduling to map the tasks in the CPUs’
queue to threads, while tasks in the GPU’ queue are executed
by the GPU. The main goal of the scheduler is to check the
dependencies of the tasks in the queue of tasks and schedule
them to the available threads as soon as they are ready to
be executed.

Figure 3 shows an example of the direct acyclic graph
(DAG) resulting from the insertion of tasks and their execu-
tion on a matrix partitioned into 5 column blocks, where
2 of the blocks are initially assigned to the CPUs. The
figure represents the different tasks and the dependencies
among them. Each circle represents a task and each arrow
represents the dependency between two tasks. For simplicity,
we represent all Pr tasks created by the panel decomposition
as one task, that is, the task P colored in red in the
figure. The U (colored in purple) and S (colored in green)
DAG vertices in figure 3 represents respectively, the dtrsm
and dgemm tasks of the algorithm. The GPU part of the
computation is represented by rectangular areas in the same



figure. We represent tasks inside these rectangular areas to
show the parts of the matrix which are detached from the
GPU and sent to the CPU dynamically during the execution.
Dashed arrows in the figure represent the transfer of data,
orange arrows show CPU to GPU panel transfers while blue
ones represent GPU to CPU block column transfers.

Figure 3. Example of a dependency acyclic graph of asynchronous CALU
on a square matrix. The matrix is partitioned into 5 blocs of columns. The
CPUs part is formed by 2 blocs of columns, i.e., 40% of the initial matrix.

C. Runtime

Figure 4 shows an execution of our algorithm for a matrix
partitioned into 7 block columns, where 3 block columns are
assigned to the CPUs before the factorization. The initial
decomposition is shown in step 0 of the figure. At that
step the CPUs factorize the panel (represented by a red bar)
using Pr threads. At step 1: One thread initiates a transfer
of the panel to the GPU, while the other P − 1 threads
start the update of the CPUs part of the trailing submatrix.
This illustrates how our approach overlaps computations and
communications. At step 2: The GPU starts the update of its
corresponding part of the trailing submatrix, while the next
Pr available threads may start a new panel factorization, and
the other P − Pr threads continue to perform the update
of the CPU’s trailing submatrix. With this approach, each
panel is always factorized in advance, so to avoid GPU stall.
At step 3: The algorithm performs as in step 1, with the
difference that a new block of columns is transfered from the
GPU to the CPUs. This transfer is asynchronous and helps
to equilibrate work with CPUs in order to replace the panel
which is being sent from the CPUs to the GPUs. This step
shows one of the best features for our algorithm: overlapping
communications in both directions with computations. We
note that, the time it takes to transfer a block of data from the
CPUs to the GPUs differs from the time it takes to perform
computations. This step illustrates only how communications
are overlapped with computations. As our algorithm is
asynchronous, these computations may represent the ones
introduced either by the panel from step 0 or by the new
factorized panel at step 2.
This process is repeated from step 2 to 3 on the remaining
part of the trailing submatrix until the factorization is com-
pleted. When the remaining matrix became very small, the
GPU is completely removed from the execution and does
not participate anymore in the computation. There are two

reasons for doing that: first, when the matrix becomes very
small, the GPU does not achieve better performance; and
second, when there are not enough computations to overlap
communications, the time to transfer data between the CPUs
and the GPU would dominate the time to simply perform
the computation associated with these data on the CPUs.

Figure 4. Example of an execution of the asynchronous CALU on a square
matrix. The matrix is partitioned into 7 block columns. The CPUs’ part is
formed by 3 blocs of columns, i.e., 42% of the initial matrix.

IV. PERFORMANCE MODEL

The initial number of block columns for the CPUs is
crucial for performance, if it is relatively small then at
least some CPUs will become idle, and if it is too large
then the GPU will become idle. The main question is
how to determine the optimal number of block columns
for each part. We propose a simple, yet accurate model
for determining the percentage of the matrix to assign to
the CPUs so that the work between the CPUs and the
GPU is balanced. Our approach incorporates a trade-off
between simplicity and accuracy. The goal is to implement
an algorithm that self-adapts on the underlying architecture
and achieves better performance.

Let A be the matrix of size m × n to be factored, b
be the block size, and P be the number of processors in
the CPUs. The block LU algorithm partitions the matrix
A into M × N block columns, where M = m/b and
N = n/b. Also, let d be the initial number of block
columns for the CPUs’ part of the matrix. We denote by g1

and g2 the peak performances of one CPU and one GPU,
respectively. These parameters correspond to the maximum
number of operations per second which can be executed by
one CPU or one GPU, respectively, and are indicated by the
architecture’s manufacturers.

At each step K of the factorization, we consider W1 to
be the total amount of work required to complete the CPUs
part, and T1 to be the theoretical minimum time to do so.
Similarly, let W2 be the total amount of work required to
complete the GPU part, and T2 be the theoretical minimum
time to do so. MK and NK are taken to be, correspondingly,
the number of block rows and block columns in the entire
trailing submatrix at the corresponding step.

As shown in figure 2, at each step K of the factorization
the CPUs factor one panel and perform d−1 updates of the
trailing submatrix in the first part of the matrix. Therefore,
W1 can be computed as: W1 = W1panel+(d−1)W1update,



where W1panel and W1update are the amount of work
required to factor and update one block column, respectively.
At the same step, the GPU performs the update of its
corresponding part of the trailing submatrix in the second
part of the matrix. Therefore, W2 can be computed as:
W2 = (NK − d)W1update. By definition, we can easily
deduce that T1 = W1

P×g1
and T2 = W2

g2
.

For a synchronous algorithm, the threads in the CPU parts
and the GPU synchronize at each step of the factorization,
if T1 is smaller or larger than T2, then at least some CPUs
or the GPU will become idle. Therefore, the goal is to have
T1 = T2.

For an asynchronous algorithm, the threads in the CPU
parts may switch immediately to the next step (K + 1)
thanks to the look-ahead, both CPUs and GPU may continue
working even if the GPU is still updating the trailing sub-
matrix corresponding to step K. In that situation, new tasks
would be inserted in the GPU’ queue without impacting its
execution. Contrary to the synchronous case, if T1 is lower
than T2, the threads will continue to insert tasks in the GPU’
queue. In that situation, the CPUs may stall only if they
compute the entire factorization of the d columns while the
GPU is still updating the trailing submatrices of previous
steps. On the other hand, if T1 is very large, then the GPU
will complete its computations early and become inactive
while waiting for some panels to be factorized. So, to avoid
GPU idle time, we must split the work so that T1 ≤ T2.

Regardless of the algorithm being synchronous or asyn-
chronous, by solving T1 = T2, we determine the optimal
number of block columns to assign to the CPUs. In partic-
ular, the following relations hold W1

P×g1
= W2

g2
⇒ g2(W1panel+(d−1)W1update) = Pg1(NK−d)W1update

By solving for d, we obtain the relation: d = Pg1NK+g2
Pg1+g2

−
W1panel

W1update

g2
Pg1+g2

.

A well known approximation for the number of operations
required to perform LU factorization on one block column
of size mK × b is W1panel = (mK − b

3 )b
2. The number of

operations to update one block column of size mK×b in the
trailing submatrix is a rank-b update, so W1update = mKb2.
Hence, W1panel

W1update
=

(mK− b
3 )b

2

mKb2 =
mK− b

3

mk
. If CALU is used

for the panel factorization, the number of flops required for
the panel (W1panel) is increased by O(b3 logPr), where
Pr is the number of processors participating in the panel
factorization. This results in an increasing of the fraction
W1panel

W1update
by O(b3 logPr)

W1update
= O(b3 logPr)

mKb2 = O(b logPr)
mK

and

becoming W1panel

W1update
=

mK− b
3+O(b logPr)

mK
. Since the block

size b is much smaller compared to the matrix size mK ,
the fraction mK− b

3+O(b logPr)

mK
will tend asymptoticly to

one, for which case we can obtain an expression d =
Pg1NK+g2
Pg1+g2

− g2
Pg1+g2

= Pg1NK

Pg1+g2
, and finally,

d
NK

= Pg1
Pg1+g2

.(1)

Here d
NK

represents the largest percentage of the matrix
for the CPUs’ part at iteration K of the factorization. The
expression Pg1

Pg1+g2
does not depend on the matrix size, and

it can be used to determine the percentage of the matrix for
the entire computation. The model suggests that the CPUs’
part (d) varies with the number and the peak performance
of the CPUs, and the peak performance of the GPU.

Communications between CPUs and GPUs are irrele-
vant for our model because the model aims to balance
computations between CPUs and GPUs such that both
finish their computations at the same time at each step
of the factorization. At the end of each step, the CPUs
and GPUs then exchange data before moving to the next
step. For synchronous algorithm, these communication time
have an impact on the overall factorization time, while for
asynchronous algorithm they are hidden by the computations
of the next steps. Hence, in both case they do not have any
significant impact on the estimation given by the model.

V. EXPERIMENTS

In this section, we evaluate the performance of our algo-
rithm on three different machines running on linux. The two
first machines use a four-socket, twelve core configuration
based on an AMD Opteron processors with a Tesla S2050
GPU, and the third machine uses a two-socket, eight core
configuration based on an Intel Xeon E5-2670 processor
with a Tesla M2090 GPU. The processors’ frequency and
the peak performance of each machine is shown in Table I.
We refer to magma dgetrf as the routine implemented in
MAGMA 1.3, which performs LU factorization using the
indicated number of cores and one GPU. Magma calu sync
refers to our previous implementation[4], that is, the ap-
proach which consists of replacing the standard panel fac-
torization in magma dgetrf with CALU, and for which the
tuned panel block size is chosen to achieve best performance.
Calu async refers to our new implementation, additional
parameters are indicated in brackets. MKL dgetrf refers to
LU factorization with partial pivoting routine, implemented
in MKL using the indicated number of cores. We use MKL
11.1.069 to compute MKL dgetrf results. MAGMA and
CALU are linked with the BLAS version in MKL.

A. Performance and scalability

1) Performance: We present the performance of
calu async with the parameter d estimated using our model.
Figure 5 shows the performance on an AMD Opteron
6180 with 48 cores and one GPU. For very small matrices,
magma dgetrf is better than magma calu sync, while for
larger matrices, magma calu sync becomes slightly better
but with no more than 5% improvement. Magma dgetrf
is better than MKL dgetrf but the performance of MKL
keeps scaling because it fully exploits the number of cores
available. For very small matrices (M = N ≤ 4032), the
performance of calu async is close to magma dgetrf but not



CPUs GPU CPUs + GPU
Processor Model Single core Total peak performance Model Peak performance Peak performance

frequency (double precision) (double precision) (double precision)
AMD Opteron 6172 2.1 Ghz 403.2 GFlops/s Tesla S2050 504 GFlops/s 907.2 GFlops/s
AMD Opteron 6180 2.5 Ghz 480.0 GFlops/s Tesla S2050 504 GFlops/s 984.0 GFlops/s
Intel Xeon E5-2670 2.6 Ghz 332.8 GFlops/s Tesla M2090 665 GFlops/s 997.8 GFlops/s

Table I
PEAK PERFORMANCE OF EACH MACHINE IN OUR TEST SET.

better. This because of the overhead caused when scheduling
very few number of tasks on large number of cores. For
M = N ≥ 5184, calu async outperforms magma dgetrf
and magma calu async. The best improvement is obtained
for M = N = 11008, where calu async is 2× faster than
magma dgetrf and magma calu sync, and also 2.7× faster
than MKL dgetrf. For the largest matrix in our test, that
is, M = N = 18048, calu async reaches 503 GFlops/s,
which represents 51% of the total peak performance (CPUs
+ GPU), while magma dgetrf reaches 276 GFlops/s which
represents 28% of the total peak performance. Figure 6

Figure 5. Performance for square matrix using 48 AMD Opteron 6180
cores and one S2050 GPU.

shows the performance on Intel Xeon E5-2670, we observe
that calu async is up to 1.5× faster than magma dgetrf
and 2× faster than mkl dgetrf, for M = N = 13056.
For M = N = 18048, it achieves 489 GFlops/s, while
magma dgetrf achieves 336 GFlops/s, which corresponds,
respectively, to 49% and 33% of the total peak performance.
Figure 7 shows the performance on high-end CPUs (Sandy

Figure 6. Performance for square matrix using 16 Intel Xeon E5-2670
cores and one M2090 GPU.

Bridge; 16 core @2.6GHz, DP Peak 332 GFlop/s), GPUs
(K20c; DP Peak 1, 174 GFlop/s), and Intel Xion Phi (DP
Peak 1, 046 GFlop/s). We observe that our implementation

using one Intel MIC behaves a good as the one using one
NVIDIA K20c GPU having approximately the same peak
performance in double precision.
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Figure 7. Asynchronous CALU on high-end CPUs (Sandy Bridge), GPUs
(K20c), and Intel Xion Phi.

2) Scalability: Figure 8 shows the scalability of
calu async vs. magma dgetrf and magma calu sync on the
AMD Opteron machine. We observe that when increasing
the number of processors, magma dgetrf does not scale.
On the same problem size, magma calu sync increases the
performance by 5% compared to magma dgetrf, but it does
not scale either, while calu async scales very well. The same
behavior is also observed on the Intel Xeon machine.

Figure 8. Scalability of CALU with modeled parameters vs. magma dgetrf
and magma calu sync.

VI. CONCLUSION

In this paper, we have introduced a new LU factorization
approach for hybrid CPU/GPU systems which balances
work between CPUs and the GPU. The main contribution
of this work was to propose an approach that can self-adapt
on any architecture by using its manufacturer’s peak
performances. We suggested a simple and yet accurate
model to compute the initial amount of work for the CPUs.
The advantage of our model is that it can be easily extended
to several others approaches in dense linear algebra. We
have used CALU for the panel factorization because of



its possibility to parallelize the panel, but also because of
the increasing popularity of such a class of algorithms.
On AMD opteron and Intel Xeon machines in our test
set, our experiments show that our algorithm is faster and
scalable compared to the corresponding standard routine in
MAGMA and our previous implementation of CALU for
GPUs presented in [4].

This work has several directives. First, we plan to extend
our implementation to multi-GPUs. This can be done easily
by broadcasting each computed panel to the GPUs and
by transferring dynamically each block column from the
appropriate GPU to the CPUs during the factorization.
Second, we will implement the same approach with the
classic partial pivoting; to do so, we plan to use a technique
such as parallel recursive LU factorization [12], [9]. Third,
our work is being incorporated into MAGMA. Finally, we
plan to extend this concept to several other dense algebra
routines such as QR, CAQR, cholesky, eigensolvers, and
much more.
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