
LU Factorization of Small Matrices: Accelerating
Batched DGETRF on the GPU

Tingxing Dong
Innovative Computing Laboratory

University of Tennessee, Knoxville
Knoxville, TN 37996
Email: tdong@utk.edu

Azzam Haidar
Innovative Computing Laboratory

University of Tennessee, Knoxville
Knoxville, TN 37996

Email: haidar@eecs.utk.edu

Piotr Luszczek
Innovative Computing Laboratory

University of Tennessee, Knoxville
Knoxville, TN 37996

Email: luszczek@eecs.utk.edu

James Austin Harris
Department of Physics Astronomy
University of Tennessee, Knoxville

Knoxville, TN 37996
Email: jharr100@utk.edu

Stanimire Tomov
Innovative Computing Laboratory

University of Tennessee, Knoxville
Knoxville, TN 37996

Email: tomov@eecs.utk.edu

Jack Dongarra
Innovative Computing Laboratory

University of Tennessee, Knoxville
Oak Ridge National Laboratory, USA

University of Manchester M13 9PL, UK
Email: dongarra@eecs.utk.edu

Abstract—Gaussian Elimination is commonly used to solve
dense linear systems in scientific models. In a large number of
applications, a need arises to solve many small size problems,
instead of few large linear systems. The size of each of these
small linear systems depends, for example, on the number of
the ordinary differential equations (ODEs) used in the model,
and can be on the order of hundreds of unknowns. To efficiently
exploit the computing power of modern accelerator hardware,
these linear systems are processed in batches. To improve the
numerical stability of the Gaussian Elimination, at least partial
pivoting is required, most often accomplished with row pivoting.
However, row pivoting can result in a severe performance penalty
on GPUs because it brings in thread divergence and non-coalesced
memory accesses. The state-of-the-art libraries for linear algebra
that target GPUs, such as MAGMA, focus on large matrix
sizes. They change the data layout by transposing the matrix
to avoid these divergence and non-coalescing penalties. However,
the data movement associated with transposition is very expensive
for small matrices. In this paper, we propose a batched LU
factorization for GPUs by using a multi-level blocked right
looking algorithm that preserves the data layout but minimizes
the penalty of partial pivoting. Our batched LU achieves up
to 2.5-fold speedup when compared to the alternative CUBLAS
solutions on a K40c GPU and 3.6-fold speedup over MKL on a
node of the Titan supercomputer at ORNL in a nuclear reaction
network simulation.

I. INTRODUCTION

Various scientific applications use Gaussian elimination to
solve dense linear systems. An important class of problems
is when many small size systems, instead of few large ones,
must be solved. Typically, the order of the linear systems is up
to a few hundred, and their number is from a few thousand to
millions. For example, subsurface transportation simulations
have a number of reaction systems to solve. Each system
involves computing a Jacobian matrix and iteratively applying
the Gaussian elimination until an outer solver converges. The
system size is typically around 100.

As another example, consider an astrophysics ODE solver
with Newton-Raphson iteration [1]. Multiple zones are simu-
lated in one MPI task and each zone corresponds to a small

linear system with each one resulting in multiple sequential
solves [1]. A sparse direct solver called MA48 solves a sparse
unsymmetric system of m linear equations in n unknowns
using Gaussian elimination. The typical matrix size is 150 by
150. If the matrix is symmetric and definite, the problem is
reduced to batched Cholesky factorization [2]. Other examples
include hydrodynamic simulations, e.g., where the need is to
compute thousands of matrix-matrix multiplies (dgemm) for
dimensions well below 100 by 100 [3].

The one-sided factorizations such as the Cholesky, LU, and
QR factorizations are based on block outer-product updates
of the trailing matrix. Algorithmically, this corresponds to a
sequence of two distinct phases: the panel factorization and the
trailing matrix update. Implementation of these two phases can
be expressed as a straightforward loop shown in Algorithm 1.

Algorithm 1 Two-phase implementation of a one-sided fac-
torization.

for Pi ∈ {P1, P2, . . . , Pn} do
PanelFactorize(Pi)
TrailingMatrixUpdate(C(i))

end for

The MAGMA library focuses on very large matrices by
using a hybrid (CPU-GPU) algorithms [4]. Because the panel
factorization is latency and memory-bound due to its predom-
inant reliance on the Level 2 BLAS operations, MAGMA
performs the panel factorization on the CPU and only uses
the GPU to update the trailing matrix[5]. A data transfer of
the factorized panel from the CPU to the GPU is required at
each step of the loop in Algorithm 1 to perform the trailing
matrix update. This overhead due to the data transfer can be
overlapped in time with the GPU computation of the trailing
matrix. This is possible because the panel matrix is small – on
the order of hundreds of columns – while the trailing matrix
is big – on the order of tens of thousands of columns.

In the batched LU implementation, however, we can not
afford such a memory transfer at any step, since the trailing

matrix is small and the amount of computation is not sufficient
to overlap it in time with the panel factorization. Many small
data transfers will take away any performance advantage
enjoyed by the GPU, especially due to the fact that the data
for transfer are not continuous in the memory but instead are
stored with a stride called a leading dimension.

Another challenge to achieving good performance is the
pivoting, which is a source of thread divergence and non-
coalescent memory accesses. This is the result of consecutive
threads accessing the matrix elements with a stride of one
column instead of one element stride when the matrix is stored
in column-major format. To mitigate this issue, MAGMA
transposes the whole matrix to the row-major format, performs
the factorization, and then transposes the matrix back to
column-major format. If the matrix is not square, extra storage
is required of the same size as the original matrix. Additionally,
the panel matrix must be transposed to the column-major
format when factorizing the panel on the CPU. A special
CUDA kernel performs these conversions between the two for-
mats. Just as the CPU-GPU transfers, the transpose operations
can be overlapped in time by the computation. However, the
frequent transposes creates too large of an overhead for the
batched factorization. Because of these restrictions, both panel
factorization and the update have to be done on the GPU to
avoid the data transfer overhead. Also, the data layout has to
be preserved.

The rest of the paper is organized as follows. First,
we give a brief overview of the related work on batched
factorizations in Section II. Second, we describe a nuclear
network astrophysics simulation called XNET that is used
as an application background. The classic LU factorization
algorithm and variants are examined in Section IV. Then,
we detail our batched implementations in Section V. The
performance obtained is presented and compared with existing
implementations, including CUBLAS, in Section VII. The
GPU accelerated result of XNET on the Titan supercomputer
at ORNL is also presented. Finally, Section VIII concludes the
paper.

II. RELATED WORK

Volkov et al. [6] implemented the right-looking algorithm
for LU, Cholesky, and QR for GPUs. These implementations
are similar to the ones in MAGMA [7] and target large prob-
lems. Villa et al. [8], [9] implemented batched LU targeting
sizes up to 128 by 128 on the GPU. They did include not only
partial pivoting but also complete pivoting. In their particular
implementation, a single CUDA thread was used to solve one
linear system of equations. However, their solution was not
faster than the NVIDIA’s batched LU implementation from
CUBLAS [10].

III. BACKGROUND

XNet is a fully implicit, general purpose solver for ther-
monuclear reaction networks in astrophysical applications [11].
Evolving the nuclear kinetics necessitates the choice of a
suitable integration scheme. With the first-order backward
Euler scheme, nuclear abundances, y, are evolved by some
change, ∆y, of the system over a time step, ∆t, according to

yn+1 = yn + ∆y. (1)

This is done using the Newton-Raphson method, based on the
Taylor series expansion of yn+1 = yn + f(yn+1) about a
known f(yn). This reduces to iteratively solving the N2 dense
matrix equation Ãx = b in the form(

Ĩ

∆t
− J̃

)
∆y = f(yn), (2)

where J̃ is the Jacobian of f(yn). Iteration continues until
the solution converges according to mass conservation or
some more stringent abundance conservation test, the choice
of which depends upon the desired accuracy. Each iteration
requires computing the full set of abundance derivatives, cal-
culating all reaction rates, evaluating the Jacobian, evaluating
the right-hand side, and then performing one LU decompo-
sition (∼ 2N3

3 floating-point operations) and backsubstitution
(∼ N2 floating-point operations). Double-precision floating-
point arithmetic is required for the calculation, as the approach
to equilibrium at various stages of the burning can lead to the
near-cancellation of large reaction fluxes.

Extending the nuclear network approximation from an
oversimplified 14-species α-network to one including 150
species or more in the nucleosynthesis evolution substantially
extends the capability of the network to track a broad variety
of particle captures. With the computational cost of evolving
the network using a dense matrix solution being O(N3),
the advancement from the traditionally used 14-species α-
network to a more realistic 150-species network makes the
nucleosynthesis computation more expensive than the neutrino
transport, because the number of species determines the size
of the linear systems. Initial analysis reveals that increasing
the number of species from 14 to 150 more than doubles the
cost.

The evolution of the nuclear kinetics for any single time
step on a single zone can be modeled as follows:

1) Choose a zone in the radial ray over which to
subcycle, if necessary;

2) Calculate the reaction rates from the REACLIB
database for nuclear reaction rates [12];

3) Calculate the necessary time step;
4) Build the left-hand side and right-hand side of Equa-

tion 2;
5) Perform LU decomposition (dgetrf) and triangular

back-substitution (dgetrs) for each linear system;
6) Update the nuclear abundances with the solution vec-

tor, ∆y, representing the trial change in abundances
for a single time step;

7) Continue the time step loop until desired time.

Step 5 of solving the linear systems (Equation 2) takes
about 75% of the total time. Since each zone can be solved
independently, there is a great deal of task-level (zone-level)
parallelism to be exploited in this problem. However, relatively
small problem sizes (14 or 150) limit the degree of data-level
parallelism. This occupancy problem is at the crux of opti-
mizing the nucleosynthesis solution and is a reflection on the
imbalance between task-level and data-level parallelism. By
grouping the systems of Equation 2 into batches of sufficient
size, we can shift the imbalance so that we may exploit the
computational tools at our disposal. Batching the zones in the

radial zone-loop directly address the issue of occupancy by
only launching a kernel when there is sufficient computation
for the GPU to perform. We can then frame the problem of
optimization as an attempt to balance task-level parallelism on
the CPU with threads and data-level parallelism on the GPU.

IV. ALGORITHMIC VARIANTS

The LU factorization (also called decomposition) is the first
step in solving a dense linear system of equations Ax = b,
where A ∈ Rm×n. The LU factorization of A with partial
pivoting has the form PA = LU , where L ∈ Rm×n is a lower
triangular with unit diagonal elements (lower trapezoidal if
m > n), U ∈ Rn×n is an upper triangular matrix (upper
trapezoidal if m < n), and P ∈ {0, 1}m×m is the row
permutation matrix.

A. The Blocked Right-Looking Algorithm

The blocked right-looking variant is shown in Algorithm 2
and its patterns of access to matrix elements is depicted in
Figure 1. The factorization of the m by n matrix A proceeds
in dn/nbe steps of size nb except for the last one. The
computation of the above steps in the LAPACK routine dgetrf,
involves four operations: dgetf2, dtrsm, dgemm, and dlaswp.

For A =

[
A11 A12

A21 A22

]
, where A11 ∈ Rnb×nb, the[

A11

A21

]
submatrix is called a panel matrix. The panels are

factorized by the dgetf2 routine:

P

[
A11

A21

]
=

[
L11

L21

]
U11. (3)

The L11 and U11 submatrices overwrite A11. The transfor-
mations in this panel factorization, along with the pivoting P
must be applied to the trailing matrix before the factorization
proceeds to the next step. Related to the pivoting, the rows of
A12 are permuted with the selected from the factorization pivot
rows (from A12 and A22). This is done by the dlaswp routine.
The pivoting information is stored in a vector generated by
dgetf2.

After the permutation, A12 is updated by a lower-triangular
solve A′12 ← L−111 A12 (dtrsm), and A22 is updated by the so
called Schur complement: A′22 = A22 − A′21A

′
12 (dgemm)

The trailing matrix A′22 is now considered as the new matrix
to be factored in the next iteration of the loop. This algorithm
keeps updating the right hand side – the trailing matrix – and
hence it is called right-looking.

The dtrsm and the dgemm routines are known as Level
3 BLAS – they allow for cache-friendly implementations
that scale well with computational load without overly taxing
the main memory bus. Due to the use of Level 3 BLAS,
the blocked implementations perform very well and reach
high flops-per-second, and in particular much higher than a
non-blocking implementation that relies on memory-bound
operations such as the Level 2 BLAS [13].

Algorithm 2 The blocked right looking LU factorization.
for i ∈ {1, 2, 3, . . . , n/nb} do

Panel Factorize Aii = LiiUii

Compute Aij = L−1
ii Aij

Permutation P

Trailing Matrix Update Ajj = Ajj − AjiAij where Aij =

a(i× nb : n, j × nb : n)

end for

Fig. 1. Access patterns to matrix regions for the blocked right-looking LU
factorization algorithm.

B. Multi-level blocked algorithm

The multi-level blocked algorithm is a variant of the
blocked algorithm, depicted in Figure 2. The main difference
is in the update of the trailing matrix. The right-looking variant
operates on a current panel and updates all the way to the right.
The multi-level blocked variant only applies the update to the
next panel, but postpones the update of the rest of the trailing
matrix after the “k-levels” of panels are factorized. Figure 2
shows the two-levels blocking of the LU factorization.

Fig. 2. Access patterns to matrix regions for the recursive blocked algorithm.

V. BATCHED IMPLEMENTATION

We target matrices of size less than or equal to 512, since
most application candidates for batched execution are of this
size [1], [2], [9]. Beyond the size of 512, we assume a single
matrix is large enough to saturate the GPU’s computational
throughput and users can call MAGMA’s standard dgetrf, even
though our code can be extended in a straightforward fashion
for sizes above 512.

A. Batched routines implementation

In a batched problem, each matrix is a separate problem
that is solved independently. All of the routines discussed are
batched and denoted by the corresponding LAPACK routine

name. We have implemented the routines in the four standard
precision arithmetics – single real, double real, single complex,
and double complex. For convenience, we use double precision
routine name throughout the paper.

1) dgetf2: dgetf2 is used to factorize a panel of size
m × nb at each step of the LU factorization. It consists of
three Level 1 BLAS calls (idamax, dswap and dscal) and
one Level 2 BLAS call (dger). Note that a natural way of
implementing dgetf2 could be to load the panel to the GPU’s
shared memory and then do the entire computation before
writing the result back to the main memory. However, this
direction can not be easily implemented and can not provide
good performance for two main reason. First, the size of the
shared memory is limited currently to only 48KB per streaming
multiprocessor (SMX) for the newest Nvidia K40, which limits
the panels that can fit at once in it. Second, saturating the
shared memory per SMX can decrease performance, since only
one thread-block will be mapped to a SMX at a time. Indeed,
due to a limited parallelism in the factorization of a small
panel, the number of threads used in the thread block will
be limited, resulting in low occupancy, and subsequently poor
core utilization. In our implementation of dgetf2 , to perform
the Gaussian elimination for the ith column of the panel, we
load only the column i to the shared memory. This is the only
data that we reuse within one step. We found that such an
implementation allows many thread-blocks to be executed by
the same SMX in parallel, and thus taking a better advantage
of its resources. Since the CUDA warp consists of 32 threads,
it is recommended to develop CUDA kernels that use multiple
of 32 threads per thread-block. For our batched algorithm, we
discovered empirically that the best value for nb is 32.

2) dlaswp: To improve the numerical stability, pivoting is
required. However, pivoting can be a performance killer for
matrices stored in column major format. Indeed, a factorization
directly in column-major format can be two times slower (de-
pending on hardware and problem sizes) than implementations
that transpose the matrix in order to internally use a row-major
storage format [6]. Yet, experiments show that this conversion
is too expensive for batched problems. In the LAPACK’s
dlaswp, the row swapping operations are serial, that is row
by row. This limits the parallelism and is one of the factors
for slow dlaswp for matrices in the column-major format.
To minimize this penalty, we proposed a parallel swapping,
detailed in Section VI-A.

3) dtrsm: After the panel factorization (3) and the row
swapping, we compute the inverse of L11, L−111 , with the dtrtri
routine. Then, the A′12 update is accomplished by a dgemm,
A′12 = L−111 A12. Generally, computing the inverse of a matrix
may suffer from numerical stability, but since A11 results from
the numerically stable LU with partial pivoting and its size is
just nb × nb, or in our case 32 × 32, we do not have this
problem [14].

4) dgemm: The goal of our batched LU is to reach the
performance of the batched dgemm. Because of its impor-
tance, a lot of previous efforts have been focused on optimizing
the dgemm routine. In particular for our case, dgemm is
not only used in the trailing matrix updates but also in the
implementation of the triangular matrix solvers (dtrsm). Since
NVIDIA CUBLAS dgemm is written in assembly language

and highly optimized on Kepler architecture, we call CUBLAS
routines.

VI. VARIOUS FACTOR IMPACTS ON THE PERFORMANCE

A. Parallel swapping

We analyzed and evaluated the implementation as de-
scribed above to find that more than 60% of the factorization
time is spent in the swapping routine. Figure 3 shows the
execution trace of 2,000 batched LU factorization of matrices
of size 512. We can observe on the top trace that the classical
dlaswp kernel is the most time consuming part of the algo-
rithm. The swapping consists of nb successive interchanges of
two rows of the matrices. The main reason that this kernel is
the most time consuming is because the nb row interchanges
are performed in a sequential order, and that the data of a
row is not coalescent, thus the thread warps do not read/write
it in parallel. It is clear that the main bottleneck here is the
memory access. Indeed, slow memory accesses compared to
high compute capabilities have been a persistent problem for
both CPUs and GPUs. CPUs for example alleviate the effect
of the long latency operations and bandwidth limitations by
using hierarchical caches. Accelerators on the other hand, in
addition to hierarchical memories, uses thread level parallelism
(TLP) where threads are grouped into warps (e.g., of 32
threads) and multiple warps assigned for execution on the same
SMX unit. The idea is that when a warp issues an access
to the device memory, it will stall until the memory returns
a value, but the accelerators scheduler switches to another
warp. In this way, even if some warps stall, other warps
can execute, keeping functional units busy while resolving
data dependencies, branch penalties, and long latency memory
requests. In order to overcome the bottleneck of swapping,
we proposed to modify the kernel in order to apply all nb
row swaps in parallel. This modification will also allow the
coalescent write of the first nb rows of the matrix. So we
changed the algorithm to generate two pivot vectors, where
the first vector gives the final destination row indices for the
first nb rows of the panel, and the second gives the row indices
of the nb rows that must become the first nb rows of the panel.
Figure 3 depicts the execution trace (bottom) when using our
parallel dlaswp kernel. The experiment shows that this reduces
the time spent in the kernel from 60% to around 10%. Note that
the colors between the top and the bottom traces do not match
each other; this is because the Nvidia profiler puts always the
most expensive kernel in green. As a result, the gain obtained
in terms of performance is around 50%, as shown in Figure 9.

B. Nested blocking

The panel factorization as described in V-A1 goes over the
nb columns and factorizes them one after another, similarly
to the LAPACK algorithm. At each of the nb steps, a rank-
1 update is required to update the vectors at the right hand
side of the factorized column i (this operation is done by
the dger kernel). Since we cannot load the entire panel into
the shared memory of the GPU, the right hand side vectors
are loaded back and forth from the main memory at every
step. Thus, one can expect that the rank-1 operation is the
most time consuming of the panel factorization. A detailed
analysis using the profiler reveals that the dger kernel consists

swap kernel	

gemm kernel	

gemm kernel	

swap kernel	

Fig. 3. Execution trace of the batched LU factorization using either classical
swap (top) or our new parallel swap (bottom).

of more than 80% of the panel factorization time, and around
40% of the total LU factorization time. Similarly to the
swapping kernel described above the main bottleneck here
is the memory access. For that, we propose to improve the
efficiency of this kernel and to reduce the memory access by
using a recursive level of blocking techniques as depicted in
Figure 4. In principle, the panel can be blocked recursively
until a single element. Yet, in practice, 2-3 blocked levels
are sufficient to achieve high performance. The above routines
must be optimized for each blocked level, which complicates
the implementation. The boost in performance obtained by this
optimization is around 25%, as demonstrated in Figure 9.

Fig. 4. Blocked panel factorization

panel: classical getf2	

panel: blocked getf2	

Fig. 5. Execution trace of the batched LU factorization using either classical
getf2 (top) or our recursive getf2 (bottom).

C. Streamed dgemm

Our main goal is to achieve higher performance and to
accomplish this we performed deep analysis of every kernel

of the algorithm. We found that 70% of the time is spent in the
batched dgemm kernel. An evaluation of the performance of
the dgemm kernel using either batched or streamed dgemm
is illustrated in Figure 6. The curves let us conclude that the
streamed dgemm was performing better than the batched one
for some cases, e.g., for k = 32 when the matrix size is of
order of m > 200 and n > 200. We note that the performance
of the batched dgemm is stable and does not dependent on k,
in the sense that the difference in performance between k = 32
and k = 128 is minor. However it is bound by 300 Gflop/s. For
that we proposed to use the streamed dgemm whenever it is
faster, and to roll back to the batched one otherwise. Figure 7
shows the trace of the batched LU factorization of 2,000
matrices of size 512 each, using either the batched dgemm
(top trace) or the combined streamed/batched dgemm (bottom
trace). We can see that the use of the streamed dgemm (when
the size allows it) can speed up the factorization by about
20% and this is confirmed by the performance curve plotted
in Figure 9.

0 32 64 128 160 192 256 384 448 512
0

100

200

300

400

500

600

700

800

900

matrix m=n

G
flo

ps
/s

streamed dgemm K=128
batched dgemm K=128
streamed dgemm K= 64
batched dgemm K= 64
streamed dgemm K= 32
batched dgemm K= 32

Fig. 6. Performance comparison between the streamed and the batched
dgemm kernel for different value of K and different matrix sizes where
m = n.

D. Multi-level blocking of the update

The performance of the streamed dgemm kernel as shown
in Figure 6 is highly dependent on the size of the matrices.
In particular, this affects the trailing matrix updates in the
LU factorization which consist of rank-k operations. The
performance of the streamed dgemm kernel is around twice
higher for k = 128 than for k = 32. Since our panel size is
limited to 32, the performance of the trailing matrix update
is limited by the performance of the dgemm for k = 32.
However, in order to achieve higher performance, we propose
to use multi-level of blocking of the trailing matrix update. The
idea here is to use multi-level of blocking during the trailing
matrix update. This means that at step i we only update the
next panel and delay the subsequent portion of the update till
step i + l where we reach a value of k that is acceptable to
perform the whole update of the delayed portion and then start
over again. For example, at step i = 0 the update is performed
only on the next 32 columns and then at the next step i = 1 the
dgemm will be using k = 64 and so on. The impact of this
strategy can be seen only for large matrices of size m > 128.
Figure 8 shows the multi-level technique for two values of
k = 64 (top graph) and k = 128 (bottom graph). The top
graph shows the trace when the value of k is equal to 64. The

stream
ed dgem

m
	

batched dgemm	

Fig. 7. Execution trace of the batched LU factorization using either batched dgemm (top) or streamed/batched dgemm (bottom).

update is delayed one step and thus at step i only the next panel
is updated using a batched dgemm because it is faster when
n = k = 32 and then at step i+1 a streamed/batched dgemm
is performed using k = 64. The bottom graph shows the trace
when the value of k is chosen to be 128. Here we can see that
the trailing matrix update is delayed 3 steps until we perform
a dgemm with k = 128. We can observe that for this range
of small matrices, increasing the value of acceptable “k” for
example to 128 gives us the advantage of performing dgemm
at higher speed but it reduce the number of such dgemm
operations (3 operations for a matrix of size 512 and k = 128
vs. 6 operations for k = 64). The performance observed is
similar for both k = 64 and k = 128 for matrices of size 512
while k = 64 is always outperforming k = 128 for smaller
sizes. As a result a trade-off value of k need to be chosen
depending on the matrix size. The improvement obtained by
this technique is around 15%, as shown in Figure 9.

VII. PERFORMANCE RESULTS

A. Comparison with CUBLAS on a K40c

We conducted our experiments on NVIDIA K40c cards
with 11.6 GB of GDDR memory per card running at 825 MHz.
The cards were connected to the host via two PCIe I/O hubs
with 6 GB/s bandwidth.

CUBLAS version 5.5 features a dgetrfBatched routine.
By comparison, our batched LU is up to 2.5× faster than
the CUBLAS routine as shown in Figure 9. The slowest
code in the figure has performance below 60 Gflop/s and
is marked as “classic” – it corresponds to the performance
of the MAGMA [4] library, which was optimized for large
matrices. The classic implementation is improved upon by
CUBLAS’ dgetrfBatched version (marked as “CUBLAS” in
Figure 9) and the performance exceeds 70 Gflop/s. To go
beyond 100 Gflop/s, we used the code that optimizes pivoting
with parallel swap. Next step in performance improvement
is the use of variable blocking (also called recursive blocking
getf2), which enables performance levels that go slightly above

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

matrix size

G
Fl

op
s

batched dgetrf 2000

Magma v5: 2levels blocking update
Magma v4: streamed/batched gemm
Magma v3: recursive blocking getf2
Magma v2: parallel swap
Magma v1: classic
CuBLAS

Fig. 9. Performance in Gflops/s of our different version of the batched LU
factorization compared to the CUBLAS implementation.

130 Gflop/s. The final two improvements are streamed/batched
gemm, which moves the performance level beyond 160 Gflop/s,
and finally, 2-levels blocking update completes the set of op-
timizations and takes the performance beyond the 180 Gflop/s
mark. Each of these optimizations is described in detail in
Section V.

B. XNET Application with GPU acceleration on Titan

We performs experiments for a 2D test of the nuclear
network application described by Equation 2 on a single node
of Titan [?]. We used three different solvers to solve the
linear system involved in the simulation. We used 1) the LU
factorization of a dense matrices dgetrf from the Intel Math
Library MKL [15], 2) the MA48 factorization from the Harwell
Subroutine Library [16], which solves a sparse unsymmetric
linear systems using Gaussian elimination, and finally our
batched GPU implementation of the LU factorization for dense
matrices. The 2D XNET test consists of 419 zones, which
also represents the number of linear systems that need to be

step 0: 	

dgemm K=32 	

next panel 	

step 1: 	

dgemm K=64	

step 2: 	

dgemm K=32 	

next panel 	

step 3: 	

dgemm K=64	

step 0,1,2: 	

dgemm K=32 	

next panel 	

step 3: 	

dgemm K=128	

step 4,5,6: 	

dgemm K=32 	

next panel 	

step 7: 	

dgemm K=128	

multi-level
blocking K=128	

multi-level
blocking K=64	

Fig. 8. The multi-level technique for k = 64 (top graph) and k = 128 (bottom graph).

solved in a set of 64 zones each. We note that when the
domain size and dimension increases, the number of zones
can be tens of thousands, but the linear system computation is
always local. For example, in a large 3D simulations, we can
distribute more MPI tasks across the nodes, and there would
be 3200 zones per GPU. The solver time includes both the
LU factorization and the backward substitution, which is done
on the CPU. Both MKL and MA48 are optimally implemented
and called, especially considering such a small data size are
comparable with the L3 Cache, which is 16MB, on Titan AMD
CPU. The GPU is a Nvidia K20x. The speedup is shown in
Figure 10. Although MAGMA batched dgetrf only accelerated
the factorization part of the solver, it achieved a 3.6× overall
speedup over MKL and 1.8× over MA48.

VIII. CONCLUSIONS

The need to solve large number of small linear systems
often arises in scientific computing applications. Examples
vary from electronic structure calculations to nuclear reaction
network simulations to electromagnetism and radar simula-
tions, to just mention a few. In contrast to large linear system
which can expose data parallelism and can be efficiently
implemented on either GPUs or CPUs, solving small linear
systems is memory bound. This is due to the fact that the
ratio of the computation to the data needed is very small
compared to the one for large matrices. Existing numerical
libraries for the highly parallel GPU architectures can not
perform well on such small problems. We demonstrated that
GPU architectures can be used efficiently for solving many

MKL MA48 MAGMA
0

1

2

3

4
Speedup of the solver for matrix size 150

S
p
e
e
d
u
p

Fig. 10. XNET Solver speedups using either the sparse solver MA48 or our
MAGMA batched LU factorization on a K20x GPU versus the MKL library.

small size problems. In particular, we developed different
algorithm variants and optimization techniques for the batched
LU factorization on GPUs and analyzed their impacts on
performance. These techniques can be used by other high level
linear algebra solvers, for example, QR, Cholesky, as well. Our
performance exceeded the CUBLAS dgetrfBatched by up to
2.5×. By integrating our batched LU in a nuclear network
simultation, we achieved up to 3.6× speedup over the MKL
Library for solving hundreds of matrices of size 150×150 on

a node of the Titan supercomputer at ORNL.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Foundation, the Department of Energy, NVIDIA and MAGMA
project support. The authors thank the testing support of the
Performance End Station PEAC Project sponsored by DOE
under Contract No. DE-AC05- 00OR22725.

REFERENCES

[1] O. Messer, J. Harris, S. Parete-Koon, and M. Chertkow, “Multicore
and accelerator development for a leadership-class stellar astrophysics
code,” in Proceedings of ”PARA 2012: State-of-the-Art in Scientific and
Parallel Computing.”, 2012.

[2] J. Molero, E. Garzón, I. Garcı́a, E. Quintana-Ortı́, and A. Plaza, “Poster:
A batched Cholesky solver for local RX anomaly detection on GPUs,”
2013, PUMPS.

[3] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra,
“A step towards energy efficient computing: Redesigning a hydrody-
namic application on CPU-GPU,” in IEEE 28th International Parallel
Distributed Processing Symposium (IPDPS), 2014.

[4] “Matrix algebra on GPU and multicore architectures (MAGMA),” 2014,
http://icl.cs.utk.edu/magma/.

[5] I. Yamazaki, S. Tomov, and J. Dongarra, “One-sided dense matrix fac-
torizations on a multicore with multiple GPU accelerators in MAGMA,”
in International Conference on Computational Science ICCS, 2012.

[6] V. Volkov and J. W. Demmel, “LU, QR and Cholesky factorizations
using vector capabilities of GPUs,” Tech. Rep. LAPACK Working Note
202.

[7] S. Tomov, R. Nath, and J. Dongarra, “Dense linear algebra solvers
for multicore with gpu accelerators,” in Proc. of the IEEE IPDPS’10,
Atlanta, GA, April 19-23 2014.

[8] V. Oreste, M. Fatica, N. A. Gawande, and A. Tumeo,
“Power/performance trade-offs of small batched LU based solvers
on GPUs,” in 19th International Conference on Parallel Processing,
Euro-Par 2013, Aachen, Germany, August 26-30 2013.

[9] V. Oreste, N. A. Gawande, and A. Tumeo, “Accelerating subsurface
transport simulation on heterogeneous clusters,” in IEEE International
Conference on Cluster Computing (CLUSTER 2013), Indianapolis,
Indiana, September, 23-27 2013.

[10] “CUBLAS,” http://docs.nvidia.com/cuda/cublas/.
[11] W. Raphael and Friedrich-Karl, “Silicon burning II: Quasi-equilibrium

and explosive burning,” ApJ, vol. 511, pp. 862–875, February 1999.
[12] R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith,

S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakharuk,
H. Schatz, F. K. Thielemann, , and M. Wiescher, “The JINA REACLIB
database: Its recent updates and impact on Type-I X-ray bursts,” ., vol.
189, pp. 240–252, July 2010.

[13] K. Gallivan, W. Jalby, and U. Meier, “The use of BLAS3 in linear
algebra on a parallel processor with a hierarchical memory,” SIAM J.
Sci. Stat. Comp., vol. 8, 1987, 10791084.

[14] D. Croz, J. J. Dongarra, and N. J. Higham, “Stability of methods for
matrix inversion,” IMA J. Numer. Anal., vol. 12, no. 119, 1992.

[15] “Intel Math Kernel Library,” http://software.intel.com/intel-mkl/.
[16] “HSL. A collection of Fortran codes for large scale scientific compu-

tation,” 2013, http://www.hsl.rl.ac.uk”.

