Publications

Export 1296 results:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Barry, D., A. Danalis, and J. Dongarra, Automated Data Analysis for Defining Performance Metrics from Raw Hardware Events,” 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), San Francisco, CA, USA, IEEE, May 2024. DOI: 10.1109/IPDPSW63119.2024.00134
Yi, Q., K. Kennedy, H. You, K. Seymour, and J. Dongarra, Automatic Blocking of QR and LU Factorizations for Locality,” 2nd ACM SIGPLAN Workshop on Memory System Performance (MSP 2004), Washington, DC, ACM, June 2004. DOI: 10.1145/1065895.1065898  (212.77 KB)
Mucci, P., J. Dongarra, R. Kufrin, S. Moore, F. Song, and F. Wolf, Automating the Large-Scale Collection and Analysis of Performance,” 5th LCI International Conference on Linux Clusters: The HPC Revolution, Austin, Texas, May 2004.  (511.6 KB)
Gates, M., J. Kurzak, P. Luszczek, Y. Pei, and J. Dongarra, Autotuning Batch Cholesky Factorization in CUDA with Interleaved Layout of Matrices,” Parallel and Distributed Processing Symposium Workshops (IPDPSW), Orlando, FL, IEEE, June 2017. DOI: 10.1109/IPDPSW.2017.18
Nath, R., S. Tomov, E. Agullo, and J. Dongarra, Autotuning Dense Linear Algebra Libraries on GPUs , Basel, Switzerland, Sixth International Workshop on Parallel Matrix Algorithms and Applications (PMAA 2010), June 2010.  (579.44 KB)
Kurzak, J., S. Tomov, and J. Dongarra, Autotuning GEMM Kernels for the Fermi GPU,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 11, November 2012. DOI: 10.1109/TPDS.2011.311  (742.5 KB)
Kurzak, J., S. Tomov, and J. Dongarra, Autotuning GEMMs for Fermi,” University of Tennessee Computer Science Technical Report, UT-CS-11-671, (also Lawn 245), April 2011.  (397.45 KB)
Balaprakash, P., J. Dongarra, T. Gamblin, M. Hall, J. Hollingsworth, B. Norris, and R. Vuduc, Autotuning in High-Performance Computing Applications,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2068–2083, November 2018. DOI: 10.1109/JPROC.2018.2841200  (2.5 MB)
Dongarra, J., M. Gates, J. Kurzak, P. Luszczek, and Y. Tsai, Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2040–2055, November 2018. DOI: 10.1109/JPROC.2018.2868961  (2.53 MB)
Luszczek, P., J. Kurzak, I. Yamazaki, D. Keffer, V. Maroulas, and J. Dongarra, Autotuning Techniques for Performance-Portable Point Set Registration in 3D,” Supercomputing Frontiers and Innovations, vol. 5, no. 4, December 2018. DOI: 10.14529/jsfi180404  (720.15 KB)
B
Abdelfattah, A., S. Tomov, and J. Dongarra, Batch QR Factorization on GPUs: Design, Optimization, and Tuning,” Lecture Notes in Computer Science, vol. 13350, Cham, Springer International Publishing, June 2022. DOI: 10.1007/978-3-031-08751-6_5
Dongarra, J., I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Hogg, P. Valero Lara, P. Luszczek, M. Zounon, et al., Batched BLAS (Basic Linear Algebra Subprograms) 2018 Specification , July 2018.  (483.05 KB)
Abdelfattah, A., A. Haidar, S. Tomov, and J. Dongarra, Batched One-Sided Factorizations of Tiny Matrices Using GPUs: Challenges and Countermeasures,” Journal of Computational Science, vol. 26, pp. 226–236, May 2018. DOI: 10.1016/j.jocs.2018.01.005  (3.73 MB)
Luszczek, P., A. Abdelfattah, H. Anzt, A. Suzuki, and S. Tomov, Batched sparse and mixed-precision linear algebra interface for efficient use of GPU hardware accelerators in scientific applications,” Future Generation Computer Systems, vol. 160, pp. 359 - 374, November 2024. DOI: 10.1016/j.future.2024.06.004
Kashi, A., P. Nayak, D. Kulkarni, A. Scheinberg, P. Lin, and H. Anzt, Batched sparse iterative solvers on GPU for the collision operator for fusion plasma simulations,” 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, IEEE, July 2022. DOI: 10.1109/IPDPS53621.2022.00024  (1.26 MB)
BDEC Pathways to Convergence: Toward a Shaping Strategy for a Future Software and Data Ecosystem for Scientific Inquiry,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-08: University of Tennessee, November 2017.
Gamblin, T., P. Beckman, K. Keahey, K. Sato, M. Kondo, and G. Balazs, BDEC2 Platform White Paper,” Innovative Computing Laboratory Technical Report, no. ICL-UT-19-11: University of Tennessee, September 2019.  (30.16 KB)
McCraw, H., D. Terpstra, J. Dongarra, K. Davis, and R. Musselman, Beyond the CPU: Hardware Performance Counter Monitoring on Blue Gene/Q,” International Supercomputing Conference 2013 (ISC'13), Leipzig, Germany, Springer, June 2013.  (624.58 KB)
Marques, O., J. Demmel, and P. B. Vasconcelos, Bidiagonal SVD Computation via an Associated Tridiagonal Eigenproblem,” LAPACK Working Note, no. LAWN 295, ICL-UT-18-02: University of Tennessee, April 2018.  (1.53 MB)
Asch, M., T. Moore, R. M. Badia, M. Beck, P. Beckman, T. Bidot, F. Bodin, F. Cappello, A. Choudhary, B. R. de Supinski, et al., Big Data and Extreme-Scale Computing: Pathways to Convergence - Toward a Shaping Strategy for a Future Software and Data Ecosystem for Scientific Inquiry,” The International Journal of High Performance Computing Applications, vol. 32, issue 4, pp. 435–479, July 2018. DOI: 10.1177/1094342018778123  (1.29 MB)

Pages