
Batched Gauss-Jordan Elimination for
Block-Jacobi Preconditioner Generation on GPUs

Hartwig Anzt
Innovative Computing Lab, University of
Tennessee, Knoxville, Tennessee, USA

hanzt@icl.utk.edu

Jack Dongarra
Innovative Computing Lab, University of
Tennessee, Knoxville, Tennessee, USA;
Oak Ridge National Laboratory, USA;

School of Computer Science, University
of Manchester, United Kingdom

dongarra@icl.utk.edu

Goran Flegar
Enrique S. Quintana-Ortı́
Depto. Ingenierı́a y Ciencia de

Computadores, Universidad Jaume I,
Castellón, Spain

flegar@uji.es, quintana@uji.es

Abstract
In this paper, we design and evaluate a routine for the efficient
generation of block-Jacobi preconditioners on graphics processing
units (GPUs). Concretely, to exploit the architecture of the graphics
accelerator, we develop a batched Gauss-Jordan elimination CUDA
kernel for matrix inversion that embeds an implicit pivoting tech-
nique and handles the entire inversion process in the GPU registers.
In addition, we integrate extraction and insertion CUDA kernels to
rapidly set up the block-Jacobi preconditioner.

Our experiments compare the performance of our implemen-
tation against a sequence of batched routines from the MAGMA
library realizing the inversion via the LU factorization with partial
pivoting. Furthermore, we evaluate the costs of different strategies
for the block-Jacobi extraction and insertion steps, using a vari-
ety of sparse matrices from the SuiteSparse matrix collection. Fi-
nally, we assess the efficiency of the complete block-Jacobi precon-
ditioner generation in the context of an iterative solver applied to
a set of computational science problems, and quantify its benefits
over a scalar Jacobi preconditioner.

Categories and Subject Descriptors G.4 [Mathematical Softwa-
re]: Efficiency; C.4 [Performance of systems]: Performance and
energy efficiency; C.1.3 [Computer Systems Organization]: Other
Architecture Styles—heterogeneous (hybrid) systems

Keywords Sparse linear systems, iterative methods, block-Jacobi
preconditioner, matrix inversion, Gauss-Jordan elimination, graph-
ics processing units (GPUs)

1. Introduction
Preconditioning is a crucial task for the efficient solution of large-
scale sparse linear systems via iterative methods [16]. The chal-
lenge is to find a preconditioner for the linear system that acceler-
ates the convergence of the iterative scheme. In practice, the pre-
conditioned iteration is attractive if the improvement of the con-
vergence rate compensates the additional work of 1) calculating
the preconditioner; and 2) applying the preconditioner during the

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PMAM’17 February 4–8, 2017, Austin, Texas, USA
Copyright c� 2017 ACM 978-1-4503-4883-6/17/02. . . $15.00
DOI: http://dx.doi.org/10.1145/10.1145/3026937.3026940

iteration process. In the context of high performance computing,
the efficiency of the preconditioner depends on how well these two
building blocks, preconditioner calculation and application, scale
on parallel architectures.

Incomplete LU (ILU) factorization techniques comprise some
of the most effective preconditioners [16]. These methods generate
the preconditioner as an incomplete factorization of the system
matrix on some nonzero pattern. The preconditioner application
in the distinct iteration steps requires solving sparse triangular
systems for the incomplete factors in order to implicitly transform
the original problem into the preconditioned one. Unfortunately,
the convergence acceleration due to ILU preconditioning comes
at the price of introducing the hard-to-parallelize sparse triangular
solves. As these triangular kernels can easily become a bottleneck
on parallel architectures, much effort has been spent on developing
efficient strategies that replace forward and backward substitutions
with approximations that provide better scalability; see [1, 3, 7, 8]
and references therein.

Compared with ILU, preconditioners based on Jacobi (diag-
onal scaling) and block-Jacobi typically render lower acceler-
ation rates on the convergence of the iterative solver [16]. In
contrast, the application of a Jacobi-type preconditioner is an
inherently-parallel operation, which turns these strategies highly
appealing for massively-parallel systems. In particular, on many-
core data-parallel architectures, such as graphics processing units
(GPUs), Jacobi-type preconditioners introduce a negligible over-
head. Furthermore, as the sparse matrix-vector product underlying
the Jacobi-type preconditioners is a central component for many
sparse linear algebra methods, hardware-optimized versions are
typically available.

From a practical point of view, the preconditioner setup for a Ja-
cobi scheme requires extracting and inverting the main diagonal of
the coefficient matrix for the linear system. For problems that inher-
ently carry a block structure, such as for example higher-order finite
element discretizations, block-Jacobi preconditioners typically of-
fer higher convergence benefits. However, a block-Jacobi scheme is
more expensive as it involves extracting the diagonal blocks from
the coefficient matrix, which is typically stored in a sparse data
structure; and either inverting these diagonal blocks for generating
a block-Jacobi matrix, or solving a set of small linear systems in
every preconditioner application.

In this paper we propose a batched routine that generates a
block-Jacobi preconditioner via the explicit inversion of a collec-
tion of small dense linear systems, especially tailored for graphics
accelerators. For this purpose, we design a batched routine, based
on Gauss-Jordan elimination (GJE) [11], that benefits from an im-

plicit pivoting strategy and handles the inversion process in the
GPU registers. In addition, we combine the batched Gauss-Jordan
elimination (BGJE) routine with the efficient extraction of the ap-
propriate matrix entries from the sparse data structures. For this ex-
traction step, we propose different strategies that trade-off pressure
on the memory bandwidth, coalescent memory access, and addi-
tional use of shared memory. Our experimental results reveal that
there exist no overall winner strategy, but the performance strongly
depends on hardware technology, Jacobi block size, and matrix
properties. To illustrate this point, we provide a detailed analysis
on the overhead that the data extraction+insertion adds to BGJE,
and a comprehensive performance analysis comparing BGJE with
other batched routines designed for the inversion of small dense
matrices.

2. Background and Related Work
2.1 Block-Jacobi preconditioning
Consider the linear system Ax = b, where the coefficient matrix
A 2 Rn⇥n, the right-hand side vector b 2 Rn, and the sought-
after solution x 2 Rn. The Jacobi method splits the coefficient
matrix as A = L + D + U , where D denotes the diagonal
of A (or block diagonal for all block-Jacobi methods), and L/U

respectively contain the entries of A below/above those in D. For
a starting solution guess x{0}, a Jacobi-type iteration based on this
splitting can then be formulated as:

x

{k} := D

�1
⇣
b� (A�D)x{k�1}

⌘

= D

�1
b+Mx

{k�1}
, k = 1, 2, . . .

(1)

The convergence of a block-Jacobi iteration is guaranteed if the
spectral radius of the iteration matrix M fulfills [16]

⇢(M) = ⇢

�
I �D

�1
A

�
< 1.

This is fulfilled for diagonally-dominant systems [16]. When used
as a preconditioner, the relaxation is typically reduced to the (block)
diagonal scaling of the right-hand side vector:

x := D

�1
b. (2)

Restricting the Jacobi relaxation to a (block) diagonal scaling ig-
nores the term x �D

�1
Ax in (1). Although, in general, this term

is nonzero, (block) diagonal scaling often succeeds in enhancing
the convergence of the iteration.

When used within an iterative framework, the application of a
block-Jacobi preconditioner D = diag(D1, D2, . . . , DN) either
requires the solution of the block diagonal linear system (2) or (as-
suming the block-inverse D̂ = D

�1 = diag(D�1
1 , D

�1
2 , . . . , D

�1
N)

has been explicitly pre-computed) a block-diagonal scaling in
terms of a matrix-vector multiplication. Typically, pre-computing
the block-inverse matrix D̂ explicitly in the preconditioner setup
is more attractive as it allows for faster preconditioner application
in the iterative solver. However, when dealing with large blocks
and sparse data structures, the inversion of matrix D can become a
bottleneck. To tackle this, we handle each block Di separately, and
use the GJE to generate their individual inverses.

2.2 GJE for matrix inversion
The conventional procedure to invert a matrix (block) Di consists
of four steps that commence with the computation of the LU fac-
torization (with partial pivoting): PiDi = LiUi, where Li is lower
unit triangular, Ui is upper triangular, and Pi is a permutation, all
three of the same dimension as the original matrix [9]. This is fol-
lowed by the inversion of the upper triangular factor Ûi := U

�1
i ;

the lower triangular solve D̂i := ÛiL
�1
i ; and the back-transform

of the permutation D

�1
i := D̂iPi.

1 % Inpu t : m x m non s i n g u l a r mat r i x b l o ck Di .
2 % Output : Mat r i x b l o ck Di o v e rw r i t t e n by i t s i n v e r s e
3 p = [1:m];

4 f o r k = 1 : m

5 % p i v o t i n g
6 [abs_ipiv , ipiv] = max(abs (Di(k:m,k)));
7 ipiv = ipiv+k-1;

8 [Di(k,:), Di(ipiv ,:)] = swap(Di(ipiv ,:), Di(k,:));

9 [p(k), p(ipiv)] = swap(p(ipiv), p(k));

10
11 % Jordan t r a n s f o rma t i o n
12 d = Di(k,k);

13 Di(:,k) =-[Di(1:k-1,k); 0; Di(k+1:m,k)] / d;% SCAL
14 Di = Di + Di(:,k) * Di(k,:); % GER
15 Di(k,:) = [Di(k,1:k-1), 1, Di(k,k+1:m)] / d;% SCAL
16 end
17 % Undo pe rmuta t i on s
18 Di(:,p) = Di;

Figure 1. Simplified loop-body of the basic GJE implementation
in Matlab notation.

The inversion of large dense matrices via GJE has been recently
revisited as an efficient alternative for current parallel systems,
including clusters and GPU accelerators [6, 15]. In essence, matrix
inversion via GJE combined with partial pivoting is as stable as
the LU-based approach, but avoids the workload unbalance due to
the operation with triangular factors in the four-stage procedure.
Furthermore, as we will describe in Section 2.3, matrix inversion
based on GJE allows an implicit permutation of the matrix.

From the algorithmic point of view, GJE for matrix inversion
consists of a loop that applies two vector scalings (SCAL) and a
general rank-1 update of the matrix (GER) at each iteration of the
algorithm; see Figure 1. The sequence of permutations produced by
GJE is the same as in the LU factorization with partial pivoting, and
GJE can be viewed as a reorganization of the four-stage LU-based
inversion approach [15]. While there exist blocked formulations
of GJE that introduce Level-3 BLAS to increase the re-utilization
of data in the cache for large-scale dense matrices, the algorithm
based on Level-2 BLAS operations in Figure 1 achieves good
performance for the small matrices we address.

2.3 GJE with implicit pivoting
Performing the pivoting step as described in Figure 1 requires ad-
ditional data movements to exchange the contents of the k-th row
with those of the selected ipiv-th row at each step. By inspecting
the operations involved in the Jordan transformation though, we
observe that the transformation applied to each row is only affected
by the values in that particular row and the selected ipiv-th row.
Hence, the actual order of the rows in the matrix is not important
during the inversion process. Thus, GJE can be implemented with-
out actually swapping the rows during the inversion process. In-
stead, all pivoting steps can be accumulated, and be realized after-
wards. When implementing this alternative approach, the pivoting
step requires some minor modifications as the pivot candidates are
no longer those elements belonging to rows k:n. Instead the algo-
rithm needs to keep track of which rows were not yet used as pivots
and select the next pivot among them. In addition, the accumulated
row permutations have to be applied, together with the column per-
mutations, after the inversion process is completed. Avoiding these
data movements is especially appealing for massively parallel ar-
chitectures, such as GPUs.

Since using implicit pivoting does not change the execution or-
der of the operations but only differs in the data’s memory location,
the numerical stability of the GJE algorithm is not affected by the
implicit pivoting strategy.

2.4 Related work on batched GPU routines
The term “batched” refers to routines that repeatedly apply the
same operation to a large collection of independent data entities.
These entities are typically small, and the absence of dependencies
makes the problem embarrassingly parallel. On parallel systems,
applying the operation to a single data entity may not fully utilize
the hardware as scheduling one data entity after another may leave
computational resources unused. A batched implementation applies
the operation to several/all data entities simultaneously, and hence
allows for more significant use of the parallel hardware. On stream-
ing processors, such as GPUs, an additional advantage comes from
the reduced kernel launch overhead from a single batched kernel
call, versus making multiple calls, one for each linear system. Fur-
thermore, if the data entities are stored consecutively in the GPU
main memory, a batched routine can make more efficient use of the
memory access as, e.g. on NVIDIA GPUs, each memory transac-
tion can read or write a few bytes of contiguous memory. Examples
of the superiority of batched implementations over baseline imple-
mentations often focus on BLAS kernels such as batched matrix-
matrix multiplication, matrix factorizations for linear systems, and
triangular systems solves [10, 13]. The use of batched routines for
efficient preconditioner generation has recently also been studied in
the context of using approximate triangular solves for incomplete
factorization preconditioning [2].

3. Design of CUDA Kernels
In order to generate a block-Jacobi preconditioner that operates
with the explicit inverses of the diagonal blocks Di, these submatri-
ces have to be extracted from the coefficient matrix A, be inverted,
and written back into the preconditioner matrix D̂. As the coeffi-
cient matrix as well as the preconditioner are typically stored using
sparse data structures, neither the extraction nor the insertion are
straight-forward. Therefore, an algorithm that generates a block-
Jacobi preconditioner may handle these steps separately from the
inversion of the diagonal blocks, with the latter computation real-
ized via the previously reviewed GJE.

Figure 2 illustrates the organization into three steps of the al-
gorithm that generates the block-Jacobi preconditioner. Here we
note that the inverse of a sparse matrix is in general dense, and in
order to attain an efficient processing in terms of a batched rou-
tine, we convert the diagonal blocks to dense format. In the re-
mainder of this section we provide details about these steps, and
their efficient realization on GPUs. For completeness we mention
that identifying the diagonal blocks via supervariable agglomera-
tion and/or graph partitioning algorithms remains outside the scope
of this paper. In the experimental section we generate the block
structure with a supervariable agglomeration procedure available
in MAGMA-sparse [12]. This generates a problem-optimal block
diagonal structure where the distinct diagonal blocks may differ in
size, and their dimension is bounded by some pre-defined maxi-
mum size. For convenience, we refer to this upper bound as the
block size, but we recognize that some diagonal blocks may be of
smaller dimension to better match the block structure of the target
problem.

3.1 Batched Gauss-Jordan elimination
BGJE computes the inverses of a large set of small dense subma-
trices corresponding to the diagonal blocks Di. The CUDA kernel
for this purpose schedules one warp to handle the inversion of one
block. This allows to leverage the large register count and the warp
shuffle instructions supported by CUDA architectures of compute
capability 3.0 and higher. Concretely, at the beginning of the kernel,
each warp reads a block from main memory into registers, and han-
dles the complete inversion process in registers. In addition, each

......

extract diagonal block from
sparse data structure

1.

2.

insert solution as diagonal block
into the preconditioner matrix

invert diagonal block via Gauss-Jordan elimination

3.

Figure 2. Generation of the block-Jacobi preconditioner via a set
of batched routines: 1) data extraction; 2) BGJE; 3) data insertion.
The block structure is indicated with red circles, the nonzero pattern
of the system matrix with blue dots.

thread of the warp operates on a single row of the block, and the el-
ements required by other threads are exchanged via warp shuffles.

Using implicit pivoting, as described in Section 2.3, we can
avoid all row permutations during the inversion process. The row
permutations, needed in the standard algorithm, are detrimental to
performance as each pivot step leaves all threads idle except for
those assigned to the two rows that are swapped. The implicit
pivoting strategy accumulates all pivoting steps. This allows to
realize them simultaneously at the end, when each thread writes
its local row to the appropriate location of the inverse matrix.

As register arrays only support direct addressing, each index
must be known at compile time to prevent the CUDA compiler from
allocating the arrays in each thread’s local memory, which shares
the same physical space with global memory, and thus incurs the
same access overhead. This is especially important to attain high
performance on Maxwell and Pascal GPUs as, for these architec-
tures, local memory requests are no longer cached in the on-chip
L1 cache, but only in the off-chip L2, which is shared by all multi-
processors and much slower than the L1 [14].

As warp shuffles can only be used for communication within
the same warp, the scope of the kernel is limited to (square) blocks
with dimension m 32. The idea of a block-Jacobi preconditioner
is to map the size of the blocks Di to the natural block structure of
the system matrix, which origins, e.g., from a higher-order finite
element discretization. As these blocks are usually of moderate
size, and in a majority of cases contain less than 32 columns/rows,
the algorithm covers the typical application area for block-Jacobi
preconditioning. If the dimension of a block is less than 32, the
remaining threads in the warp remain idle during the inversion step.

3.2 Batched data extraction and insertion
BGJE expects a collection of small dense blocks as input, while
the block-Jacobi preconditioner needs to be generated for a sparse
(coefficient) matrix stored in CSR format. Thus, a preprocessing
step is needed to extract the diagonal blocks from the sparse data
structure, and convert them into a set of dense matrices.

Use of caches. The extraction step can be implemented by in-
structing the threads of i-th warp to traverse the rows of the sys-
tem matrix corresponding to Di, keeping only the elements that
belong to this diagonal block. This approach relies on the L1 and
L2 caches to store the data needed for consecutive memory trans-
actions in the extraction step. After completion of the GJE step, the
inverse diagonal blocks are written into the preconditioner matrix
stored in main memory. We refer to these strategies as cached ex-
traction and cached insertion. Unfortunately, as the CSR format is
based on row-major storage, this approach results in uncoalesced
memory accesses; see Figure 3.

Use of shared memory. A coalescent alternative is possible by
introducing an intermediate step that generates the dense matrices
first in shared memory before writing them back to main memory.
Here the threads of a warp traverse the elements in the correspond-
ing rows of the sparse matrix structure, and store the elements part
of the diagonal block as a dense matrix in column-major format
in shared memory. The subsequent GJE step then benefits from
the coalesced access to the dense system, and the access-friendly
column-major order; see Figure 3. After completing the inversion,
the reverse strategy inserts the inverse diagonal blocks into the
CSR structure of the block-Jacobi preconditioner. We refer to these
strategies as shared extraction and shared insertion.

3.3 Block-Jacobi generation
The generation of the block-Jacobi preconditioner comprises the
three steps: data extraction from the sparse matrix A, inversion
via BGJE, and the insertion of the inverse diagonal blocks into the
sparse structure for the preconditioner D̂. These steps can be real-
ized as a sequence of three kernels, or merged into a single routine.
Merging the distinct steps into one kernel makes the generation of
the dense systems in main memory obsolete, and therewith signif-
icantly reduces the volume of accesses to main memory. However,
the knowledge about the indexing that is necessary to avoid reg-
ister spills during BGJE then transfers to the extraction step. This
implies that all accesses to the dense matrix rows in the extraction
and the insertion step must use indexing known at compile time.

4. Experiments
We next evaluate the performance of our block-Jacobi precondi-
tioner generation kernel, described in Section 3, with a series of
experiments designed to test different properties of the approach.

We begin by comparing the performance of the batched inver-
sion step with the conventional (LU-based) batched inversion rou-
tine available in MAGMA 2.2.0 [12]. Next, we analyze the cost
of the data extraction and insertion steps on a set of sparse ma-
trices from the SuiteSparse Matrix Collection (formerly known
as the University of Florida Sparse Matrix Collection; see http:
//www.cise.ufl.edu/research/sparse/matrices/ and the
three leftmost columns in Table 2 for details.) Finally, we evalu-
ate the benefits of the block-Jacobi preconditioner compared with
the standard Jacobi in an iterative solver setting.

We conduct these experiments on a variety of different GPU ar-
chitectures. This exposes the effect that various hardware features
have on the behavior of different preconditioner generation strate-
gies. The conclusions are therefore not tied to specific hardware,
but cover a broad range of hardware designs.

4.1 Hardware and software framework
The GPUs used for the experiments belong to NVIDIA’s Tesla se-
ries for high performance computing: K20, K40, K80, and P100.
This covers the recent compute capabilities designed with full
double-precision support: 3.5 (K20 and K40), 3.7 (K80) and 6.0
(P100). We exclude the outdated Fermi (compute capability 2.0)

shared memory
extraction

memory
requests

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

cached
extraction

1

2

3

4

5

col-indicesrow-ptr col-indicesrow-ptr

Figure 3. Illustration of the memory requests for the cached ex-
traction and shared extraction (left and right, respectively). We as-
sume warps of 4 threads, and visualize the data read by the dis-
tinct threads at each iteration with colored cells. We only show the
accesses to the vector storing the col-indices of the CSR matrix
structure; the access to the actual values induces far less overhead,
as these memory locations are accessed only if a location belong-
ing to a diagonal block is found. In that case, the access pattern is
equivalent to the one used for col-indices.

GPUs, as our routines rely on register shuffles and require large
numbers of registers per thread, which are not available on this
hardware. All computations use double precision arithmetic. Since
the complete algorithm is executed on the GPU, the CPU in the host
is not relevant for the following experimentation. We use NVIDIA’s
GPU compilers that ship with the CUDA toolkit 8.0.

All kernels are implemented using the CUDA programming
model and are designed to integrate into the MAGMA-sparse li-
brary [12]. MAGMA-sparse is also leveraged to provide a testing
environment, the block-pattern generation, and the sparse solvers.

4.2 Performance of BGJE
Figure 4 compares the performances of our BGJE inversion rou-
tine with the LU-based alternative implemented in MAGMA. The
two codes are not completely interchangeable, as the BGJE imple-
mentation works for matrices of row/column dimension m up to
32, while the LU-based inversion can handle also larger matrices,
however all of them having the same size. For this reason, we limit
this experiment to inputs that accommodate both constraints: all
matrices in the batch are of the same size m and have at most 32
rows/columns. For brevity, we only show the results for m = 8

Block size 8 Block size 32
Kepler architecture

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Batch size ×105

0

2

4

6

8

10

12

G
F

lo
p

/s

K40

K80

K20

BGJE
BLU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Batch size ×105

0

20

40

60

80

100

120

140

G
F

lo
p
/s

K40

K20

K80

BGJE
BLU

Pascal architecture

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Batch size ×105

0

5

10

15

20

25

30

35

G
F

lo
p

/s

BGJE
BLU

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Batch size ×105

0

100

200

300

400

500

600

G
F

lo
p
/s

BGJE
BLU

Figure 4. Performance of the batched matrix inversion routines: BGJE vs the batched LU (BLU) kernel in MAGMA. For the Kepler
architecture, we distinguish the data for K20, K40, and K80 using triangles pointing down, diamonds, and triangles pointing up, respectively.

and 32. We remind that the inverse of a sparse matrix is, in gen-
eral, dense. Thus, the cost of inverting a matrix via LU depends on
the actual numerical values only to a minor extent (which is due to
differences in the permutation sequence). Furthermore, due to the
integration of implicit pivoting, the cost of our matrix inversion via
GJE does not depend on the permutation sequence at all. There-
fore, the actual data matrices that we used in the evaluation of this
particular step is irrelevant.

The results in Figure 4 show the superiority of the GJE-based
approach in terms of billions of floating-point operations (Flops)
per second (GFlops/s). This can be attributed to better load balance
of GJE in a parallel setting, use of registers for matrix storage,
and decreased memory movement due to implicit pivoting. As a
side note, a prototype implementation of the GJE-based approach
which failed to have all register array indexing known at compile
time achieved slightly better results than MAGMA’s LU solution on
Kepler GPUs, but offered worse performance on P100. As argued
in Section 3, this is a side effect of architectural changes introduced
on Maxwell GPUs, where local memory accesses are no longer
cached in on-chip L1 cache. Additionally, even for the final kernel
which is optimized to use registers instead of local memory, the
compiler supplied with the older CUDA toolkit version 7.5 failed
to produce a PTX code that uses registers. However, the new CUDA
8.0 compiler produced properly optimized PTX code.

4.3 Performance of data extraction+insertion
We perform the following experiments using four strategies to
generate the block-Jacobi preconditioner:

1. Block-Jacobi setup using cache (UC).
2. Merged block-Jacobi setup using cache (MC).
3. Block-Jacobi setup using shared memory (US).
4. Merged block-Jacobi setup using shared memory (MS).

In particular, to reduce the number of possibilities, we exclude hy-
brid combinations that merge shared extraction with cached inser-
tion or shared insertion with cached extraction.

To compare the effect of different approaches, we measure the
cost of data extraction+insertion as the percentage of runtime in-
crease of the entire three-step block-Jacobi generation (extraction,
BGJE, and insertion) compared to BGJE only. Since the amount of
flops increases linearly with respect to the system matrix dimen-
sion, we can expect this overhead to be considerable as the perfor-
mance is bounded by data movement.

Figure 5 visualizes the costs of extraction+insertion for the dif-
ferent system matrices. The plots reveal several interesting insights:
1) No strategy is an overall winner. The cached versions usually
work better for sparsity patterns with smaller block sizes, while
the ones using shared memory are the preferred choice for larger
block sizes. 2) The shared memory versions offer higher perfor-
mance on P100 (and to some extent on K80) than on K40 and K20.
This can be explained by inspecting the profiling results in Table 1.
The shared memory versus register count ratios are higher in favor

Block size 8 Block size 32
K20

0 10 20 30 40 50 60
Test matrices

1

2

3

4

5

6

7

8

9

B
J

g
e

n
e

ra
tio

n
 t

im
e

 /
 B

G
JE

 t
im

e US
UC
MS
MC

0 10 20 30 40 50 60
Test matrices

1

2

3

4

5

6

7

8

9

B
J

g
e

n
e

ra
tio

n
 t

im
e

 /
 B

G
JE

 t
im

e US
UC
MS
MC

K40

0 10 20 30 40 50 60
Test matrices

1

2

3

4

5

6

7

B
J

g
e

n
e

ra
tio

n
 t

im
e

 /
 B

G
JE

 t
im

e US
UC
MS
MC

0 10 20 30 40 50 60
Test matrices

1

2

3

4

5

6

7

B
J

g
e

n
e

ra
tio

n
 t

im
e

 /
 B

G
JE

 t
im

e US
UC
MS
MC

K80

0 10 20 30 40 50 60
Test matrices

1

2

3

4

5

6

7

B
J

g
e

n
e

ra
tio

n
 t

im
e

 /
 B

G
JE

 t
im

e US
UC
MS
MC

0 10 20 30 40 50 60
Test matrices

1

1.5

2

2.5

3

3.5

4

4.5

5

B
J

g
e
n
e
ra

tio
n
 t
im

e
 /
 B

G
JE

 t
im

e US
UC
MS
MC

P100

0 10 20 30 40 50 60
Test matrices

1

2

3

4

5

6

B
J

g
e

n
e

ra
tio

n
 t

im
e

 /
 B

G
JE

 t
im

e US
UC
MS
MC

0 10 20 30 40 50 60
Test matrices

0

2

4

6

8

10

12

B
J

g
e
n
e
ra

tio
n
 t
im

e
 /
 B

G
JE

 t
im

e US
UC
MS
MC

Figure 5. Time required to generate the block-Jacobi preconditioner (all three steps) relative to the execution time of the BGJE step. The
matrices in each figure are sorted according to the fastest routine (on average) for that particular combination of block size and architecture.

K20/K40 (3.5) K80 (3.7) P100 (6.0)
smem regs blocks smem regs blocks smem regs blocks

SM characteristics 48 65,536 16 112 131,072 16 64 65,536 32

M
ax

bl
oc

ks
/S

M inversion - 21 16 - 42 16 - 14 14
extraction cache - 146 16 - 292 16 - 146 32
insertion cache - 146 16 - 292 16 - 157 32

merged cache - 20 16 - 40 16 - 13 13
extraction shared 6 113 6 14 227 14 8 136 8
insertion shared 6 89 6 14 178 14 8 52 8

merged shared 6 20 6 14 40 14 8 14 8

Table 1. Factors limiting multiprocessor occupancy for different kernels and architectures. The first row shows the shared memory (smem)
in KB and the amount of registers (regs) available on each multiprocessor, as well as the maximal number of blocks that can be scheduled
on a multiprocessor at the same time (blocks). The “Max blocks / SM” section shows how shared memory and register usage affects the
maximum number of resident warps per multiprocessor. The blocks column combines these two limiting factors with the hardware limit on
the number of blocks to obtain the actual limit on the number of blocks. We note that the K20 and K40 architectures contain 15 SMs, the
K80 contains 2x15 SMs, and the P100 contains 60 SMs.

Tridiagonal structure Arrow structure
K40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Matrix size

×104

1

1.5

2

2.5

3

3.5

4

4.5

B
J

g
e
n
e
ra

tio
n
 t
im

e
 /
 B

G
JE

 t
im

e US
UC
MS
MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Matrix size

×104

0

5

10

15

20

25

B
J

g
e
n
e
ra

tio
n
 t
im

e
 /
 B

G
JE

 t
im

e US
UC
MS
MC

P100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Matrix size

×104

0.5

1

1.5

2

2.5

3

B
J

g
e
n
e
ra

tio
n
 t
im

e
 /
 B

G
JE

 t
im

e US
UC
MS
MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Matrix size

×104

0

5

10

15

20

B
J

g
e
n
e
ra

tio
n
 t
im

e
 /
 B

G
JE

 t
im

e US
UC
MS
MC

Figure 6. Runtime for generating the block-Jacobi preconditioner relative to the runtime of the BGJE inverting the diagonal blocks. The test
matrices on the left have tridiagonal structure, the test matrices on the right side have arrow structure.

K40

C
he

by
sh

ev
2

Le
G
re

sl
ey

_2
50

8

dw
10

24

dw
20

48

sa
yl
r4

C
he

by
sh

ev
3

pi
st
on

st
s4

09
8

na
sa

29
10

ol
m

50
00

s2
rm

t3
m

1

s1
rm

t3
m

1

s3
rm

t3
m

1

s3
rm

t3
m

3

s2
rm

q4
m

1

s3
rm

q4
m

1
Kuu

m
sc

10
84

8

bc
ss

tk
17

dw
81

92

dw
40

96

C
ur

lC
ur

l_
0

lin
ve

rs
e

bc
ss

tk
18

nd
3k

bc
ss

tk
38

ne
m

et
h1

5

cb
uc

kl
e

Pre
s_

Poi
ss

on
nd

6k

ABAC
U
S_s

he
ll_

ud

sp
m

sr
tls

nd
12

k

sm
e3

D
c

cr
an

ks
eg

_1

cz
40

94
8

gr
id
ge

na

ib
m

_m
at

rix
_2

3D
_5

14
48

_3
D

2D
_5

40
19

_h
ig
hK

nd
24

k

ga
s_

se
ns

or

sh
ip
_0

03

ra
il_

79
84

1

m
at

rix
_9dc

3

m
at

rix
-n

ew
_3 F1

C
ur

lC
ur

l_
1

af
_s

he
ll3

Em
ilia

_9
23

ec
ol
og

y2

H
oo

k_
14

98

G
3_

ci
rc

ui
t

M
L_

G
ee

r

Fla
n_

15
65

10-5

10-4

10-3

10-2

10-1

100

B
lo

ck
 J

a
co

b
i g

e
n

e
ra

tio
n

 t
im

e
 [

s]

Block size 4
Block size 8
Block size 16
Block size 24
Block size 32

P100

C
he

by
sh

ev
2

ol
m

50
00

Le
G
re

sl
ey

_2
50

8

pi
st
on

C
he

by
sh

ev
3

sa
yl
r4

st
s4

09
8

s2
rm

t3
m

1

dw
20

48

C
ur

lC
ur

l_
0

dw
10

24

s3
rm

q4
m

1

na
sa

29
10

s1
rm

t3
m

1
Kuu

s3
rm

t3
m

3

m
sc

10
84

8

s2
rm

q4
m

1

bc
ss

tk
38

dw
81

92

s3
rm

t3
m

1

lin
ve

rs
e

dw
40

96

bc
ss

tk
17

bc
ss

tk
18

ne
m

et
h1

5

cb
uc

kl
e
nd

3k

Pre
s_

Poi
ss

on

ABAC
U
S_s

he
ll_

ud

sp
m

sr
tls

cz
40

94
8
nd

6k

gr
id
ge

na

ib
m

_m
at

rix
_2

3D
_5

14
48

_3
D

sm
e3

D
c

2D
_5

40
19

_h
ig
hK

ga
s_

se
ns

or

nd
12

k

ra
il_

79
84

1

cr
an

ks
eg

_1

m
at

rix
_9dc

3

m
at

rix
-n

ew
_3

sh
ip
_0

03

nd
24

k

C
ur

lC
ur

l_
1F1

af
_s

he
ll3

ec
ol
og

y2

Em
ilia

_9
23

G
3_

ci
rc

ui
t

H
oo

k_
14

98

M
L_

G
ee

r

Fla
n_

15
65

10-5

10-4

10-3

10-2

10-1

B
lo

ck
 J

a
co

b
i g

e
n

e
ra

tio
n

 t
im

e
 [

s]

Block size 4
Block size 8
Block size 16
Block size 24
Block size 32

Figure 7. Runtime for generating the block-Jacobi preconditioner for different block sizes. For each block size we use the extraction strategy
that gives the best average performance.

of shared memory for compute capabilities 3.7 and 6.0 than in 3.5.
For the shared memory versions, the number of scheduled blocks
per multiprocessor is limited by the shared memory consumption.
Conversely, for the cache versions, the number of scheduled blocks
per multiprocessor is limited by the register usage. As a result, on
the older devices, the benefit of higher data locality cannot compen-
sate for the lower occupancy. This also explains why US is faster
than MS on older GPUs: When using the merged shared kernel, the
shared memory requirement for extraction and insertion limits the
number of blocks active on each SM. The unmerged version, how-
ever, separates the BGJE kernel from this restriction. While it uses
the same number of blocks per SM for the extraction and inser-
tion steps, it can schedule more blocks per SM for the inversion via
BGJE, see Table 1.

Figure 6 demonstrates the effect which different sparsity pat-
terns of the system matrix have on the performance of the extraction

step. Concretely, we show the runtime of the block-Jacobi genera-
tion relative to only the inversion step for matrices with tridiagonal
(left) and arrow (right) patterns. For the same size, the matrices
have the same number of nonzeros, but differ in how the nonzeros
locations are distributed. The different nonzero pattern have signif-
icant impact on the performance of the extraction strategies. For
brevity, we only use a block size of 32 and only show the data for
K40 and P100; the results for other block sizes and the K20 and
K80 architectures are similar.

For the tridiagonal pattern, the extraction strategies using shared
memory and the cache extraction+insertion achieve similar perfor-
mance, as the memory access in the cache version of the extraction
step is sufficiently coalescent for the matrices with a small number
of nonzeros per row. Oppose to this, for the arrow sparsity pattern,
the shared memory strategies are superior. For this pattern, the ma-
jority of nonzeros is located in the last row, and the extraction of

the last diagonal block becomes a bottleneck. UC and MC strate-
gies allocate a single thread to extract data from this row, while US
and MS distribute the computation required to extract the last block
equally among all threads of the warp.

Therefore, we can expect both to provide comparable perfor-
mance for balanced nonzero distributions, and the shared memory
strategies to be superior for irregular patterns where few rows con-
tain a large fraction of the nonzero elements.

4.4 Runtime of block-Jacobi generation
Figure 7 reports the total runtime of the block-Jacobi precondi-
tioner generation for a few selected block sizes. As in Figure 6,
we limit the data presented to the K40 and P100 architectures. We
observe that the block-Jacobi preconditioner generation is in some
cases faster for a larger block size than for a smaller block size.
This comes from the fact that we always assign one warp to one
diagonal block, and a smaller block size results in a higher block
count.

4.5 Convergence benefits in the context of an iterative solver
Table 2 compares the convergence and execution time of an IDR(4)
iterative solver [17] enhanced with either a (scalar) Jacobi precon-
ditioner or a block-Jacobi preconditioner for the selected cases of
the SuiteSparse collection. The execution time entails both the pre-
conditioner generation and the iterative solver execution. All rou-
tines are taken from the MAGMA-sparse open source software
package [12]. IDR is among the most robust Krylov solvers [4], and
the IDR implementation available in MAGMA-sparse has proven
to achieve performance close to the hardware-imposed bounds [5].

The results reveal that, for many of the test matrices, the scalar
version of Jacobi fails to improve the convergence rate to meet the
iteration limit of 100,000 iterations. For the test matrices where
IDR(4) preconditioned with scalar Jacobi converges, the costlier
block-Jacobi preconditioner generation is typically compensated
by the more significant convergence improvement. This provides
strong evidence that the overhead of the preconditioner generation
remains small, and the block-Jacobi generation based on batched
Gauss-Jordan elimination is an efficient tool in the context of itera-
tive solvers on manycore architectures.

5. Summary and Future Work
We have proposed a batched method to assemble a block-Jacobi
preconditioner on GPUs that exhibits a higher level of concurrency
and can be expected to incur considerably less overhead than con-
ventional ILU-type preconditioners. For the block-Jacobi precondi-
tioner generation, we designed a batched Gauss-Jordan elimination
kernel for the inversion of the diagonal blocks that strongly bene-
fits from register use and an implicit pivoting strategy. We demon-
strated that our batched Gauss-Jordan elimination outperforms the
standard LU-based approach by more than an order of magnitude.
Furthermore, we compared two efficient strategies for extracting
the block diagonal of the sparse data structures storing the coef-
ficient matrix, and concluded their performance being dependent
on the GPU architecture. Finally, we demonstrated that the block-
Jacobi preconditioned iterative solver is considerably more efficient
than a solver enhanced with a simple scalar Jacobi preconditioner
in terms of both, number of iterations for convergence and total
runtime.

As part of future work, we will pursue additional performance
improvements to the preconditioner application which leverage the
block diagonal structure of the block-Jacobi matrix.

Acknowledgments
This material is based upon work supported by the U.S. Depart-
ment of Energy Office of Science, Office of Advanced Scien-
tific Computing Research, Applied Mathematics program under
Award Number DE-SC-0010042. G. Flegar and E. S. Quintana-
Ortı́ were supported by project TIN2014-53495-R of the MINECO
and FEDER.

References
[1] H. Anzt, E. Chow, and J. Dongarra. Iterative sparse triangular solves

for preconditioning. In Euro-Par 2015: Parallel Processing: 21st
Int. Conf. on Parallel and Distributed Computing, pages 650–661.
Springer, 2015.

[2] H. Anzt, E. Chow, T. Huckle, and J. Dongarra. Batched generation
of incomplete sparse approximate inverses on GPUs. In Proc. 7th
Workshop on Scalable Algorithms for Large-scale Systems, ScalA’16,
2016.

[3] H. Anzt, E. Chow, D. Szyld, and J. Dongarra. Domain Overlap for It-
erative Sparse Triangular Solves on GPUs. In H.-J. Bungartz, P. Neu-
mann, and W. E. Nagel, editors, Software for Exascale Computing -
SPPEXA, volume 113 of Lecture Notes in Computer Science and En-
gineering, pages 527–545. Springer International Publishing, 2016.

[4] H. Anzt, J. Dongarra, M. Kreutzer, G. Wellein, and M. Koehler. Effi-
ciency of General Krylov Methods on GPUs – An Experimental Study.
In 2016 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pages 683–691, 2016.

[5] H. Anzt, M. Kreutzer, E. Ponce, G. D. Peterson, G. Wellein, and
J. Dongarra. Optimization and performance evaluation of the IDR
iterative Krylov solver on GPUs. Int. J. High Performance Computing
& Applications, 2016.

[6] P. Benner, P. Ezzatti, E. Quintana-Ortı́, and A. Remón. Matrix inver-
sion on CPU-GPU platforms with applications in control theory. Con-
currency and Computation: Practice and Experience, 25(8):1170–
1182, 2013. ISSN 1532-0634.

[7] E. Chow and A. Patel. Fine-grained parallel incomplete LU factoriza-
tion. SIAM Journal on Scientific Computing, 37(2):C169–C193, 2015.

[8] E. Chow and J. Scott. On the use of iterative methods and blocking
for solving sparse triangular systems in incomplete factorization pre-
conditioning. Technical Report Technical Report RAL-P-2016-006,
Rutherford Appleton Laboratory, 2016.

[9] G. Golub and C. V. Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 3rd edition, 1996.

[10] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra. Batched
matrix computations on hardware accelerators based on GPUs. Int. J.
High Performance Computing & Applications, 29(2):193–208, 2015.

[11] A. S. Householder. The Theory of Matrices in Numerical Analysis.
Dover, New York, 1964.

[12] Innovative Computing Lab. Software distribution of MAGMA version
2.0. http://icl.cs.utk.edu/magma/, 2016.

[13] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. Implementation and
tuning of batched cholesky factorization and solve for NVIDIA GPUs.
IEEE Trans. on Parallel and Distributed Systems, 27(7):2036–2048,
July 2016. ISSN 1045-9219. doi: 10.1109/TPDS.2015.2481890.

[14] NVIDIA Corporation. NVIDIA CUDA C program-
ming guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/, September 2016. Version 8.0.
[15] E. S. Quintana-Ortı́, G. Quintana-Ortı́, X. Sun, and R. van de Geijn.

A note on parallel matrix inversion. SIAM Journal on Scientific
Computing, 22(5):1762–1771, 2001.

[16] Y. Saad. Iterative Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd
edition, 2003. ISBN 0898715342.

[17] P. Sonneveld and M. B. van Gijzen. IDR(s): A Family of Simple and
Fast Algorithms for Solving Large Nonsymmetric Systems of Linear
Equations. SIAM Journal on Scientific Computing, 31(2):1035–1062,
2009.

Jacobi Block-Jacobi (4) Block-Jacobi (8) Block-Jacobi (16) Block-Jacobi (32)
Matrix size #nnz/row #iters time [s] #iters time [s] #iters time [s] #iters time [s] #iters time [s]
2D 54019 highK – – 7795 14.38 3083 5.85 1042 2.08 301 0.63 507 1.06
3D 51448 3D – – – – – – 7208 16.46 214 0.52 2505 5.86
ABACUS shell ud 2492 4.03 1764 2.96 1512 2.62 1919 3.42 1830 3.27 1084 2.01
af shell3 1931 11.88 1228 8.28 1374 9.28 1066 8.32 1154 9.09 1108 9.46
bcsstk17 1271 2.17 1122 1.97 1141 2.01 609 1.11 532 0.97 574 1.06
bcsstk18 1038 1.48 590 0.99 504 0.90 360 0.66 318 0.58 311 0.60
bcsstk38 – – 4772 9.17 3510 6.82 2009 3.97 1402 2.78 1820 3.55
cbuckle 207 0.41 103 0.23 73 0.15 63 0.15 19 0.06 49 0.11
Chebyshev2 – – – – 138 0.41 47 0.13 34 0.10 28 0.09
Chebyshev3 – – – – – – 148 0.58 80 0.32 73 0.30
crankseg 1 229 0.75 153 0.58 145 0.58 149 0.63 135 0.57 103 0.47
CurlCurl 0 94 0.14 72 0.14 64 0.13 52 0.12 50 0.11 46 0.10
CurlCurl 1 301 0.82 236 0.72 197 0.64 130 0.51 126 0.55 108 0.55
cz40948 – – 63159 112.52 33527 61.08 – – 39056 74.92 34785 66.82
dc3 237 24.51 143 14.77 121 12.60 124 12.87 138 14.43 189 19.69
dw1024 – – 253 0.43 124 0.24 130 0.26 78 0.15 52 0.10
dw2048 – – 253 0.45 124 0.25 130 0.26 78 0.15 52 0.10
dw4096 – – – – – – 4713 7.30 1471 2.41 876 1.45
dw8192 – – – – – – 4713 7.30 1471 2.44 876 1.47
ecology2 5985 37.78 4672 32.09 3231 23.90 2901 25.47 2417 22.22 2691 27.31
Emilia 923 – – 50740 678.05 23572 329.08 51106 811.30 17632 291.14 42239 746.98
F1 2751 20.40 2255 15.82 2261 16.15 1928 15.17 1946 15.17 1742 14.65
Flan 1565 – – – – – – – – – – 155918 6130.28
G3 circuit 2510 24.06 974 10.00 1091 13.90 1074 16.46 906 15.18 1028 18.97
gas sensor – – – – 17310 37.17 11702 26.24 19057 43.12 7724 17.65
gridgena 1205 2.16 830 1.55 662 1.26 696 1.38 672 1.36 696 1.44
Hook 1498 – – 29323 694.23 6394 143.86 6270 161.82 16930 671.64 2684 71.45
ibm matrix 2 – – – – – – 7007 16.02 206 0.52 2275 5.36
Kuu 98 0.16 74 0.13 68 0.14 69 0.13 59 0.13 58 0.13
LeGresley 2508 261 0.39 203 0.37 176 0.33 188 0.36 168 0.31 153 0.28
linverse 2761 4.17 – – – – 6351 10.41 1986 3.37 870 1.59
matrix 9 1451 3.01 602 1.32 661 1.52 496 1.23 89 0.29 489 1.31
matrix-new 3 – – 5270 11.43 5640 12.96 5277 13.05 221 0.62 2290 5.98
ML Geer – – 1659 38.10 1345 37.28 2110 66.81 1518 50.09 1169 36.68
msc10848 – – – – – – – – 11503 22.16 9372 17.93
nasa2910 587 0.85 562 0.94 495 0.83 385 0.68 435 0.74 339 0.61
nd12k 25417 85.50 10932 35.91 3487 11.95 2130 7.49 1300 4.58 1308 4.63
nd24k 38865 209.63 13382 73.13 4007 21.20 1886 10.31 1865 9.94 1149 6.45
nd3k – – – – – – 2928 5.97 1961 4.04 2494 5.08
nd6k – – – – 8259 20.19 4370 10.81 2906 7.27 1847 4.64
nemeth15 51 0.09 45 0.10 – – 70 0.15 27 0.05 31 0.06
olm5000 – – 344 0.58 179 0.35 114 0.22 139 0.25 165 0.31
piston – – 122 0.24 125 0.25 125 0.25 93 0.19 93 0.18
Pres Poisson 188 0.33 149 0.31 114 0.24 91 0.18 86 0.17 74 0.17
rail 79841 987 1.84 952 1.86 817 1.66 679 1.46 691 1.53 517 1.20
s1rmt3m1 237 0.35 165 0.32 150 0.29 132 0.27 129 0.27 135 0.28
s2rmq4m1 613 0.92 307 0.56 229 0.42 218 0.42 198 0.37 199 0.39
s2rmt3m1 1124 1.73 372 0.65 267 0.49 211 0.39 163 0.32 193 0.37
s3rmq4m1 – – 3977 6.31 1007 1.65 1277 2.12 425 0.74 718 1.19
s3rmt3m1 – – – – 8565 13.56 1354 2.25 410 0.70 1117 1.88
s3rmt3m3 – – – – 10497 16.51 1503 2.49 651 1.12 907 1.51
saylr4 1077 1.52 359 0.59 255 0.45 183 0.32 120 0.24 130 0.26
ship 003 8324 20.29 2150 5.58 2219 6.08 2501 7.43 2102 6.31 1799 5.65
sme3Dc 3455 7.91 3216 7.79 3449 8.53 3762 9.54 2680 6.92 2405 6.22
spmsrtls – – – – – – – – 39425 71.16 7797 14.18
sts4098 103 0.19 82 0.18 85 0.19 70 0.16 59 0.13 54 0.12

Table 2. Iterations and execution time of IDR(4) enhanced with scalar Jacobi preconditioning or block-Jacobi preconditioning. The runtime
combines the preconditioner setup time and the iterative solver execution time.

