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Abstract

In spite of the existence of several Grid middleware projects, developing and
executing programs on the computational Grid remains a user intensive process.
The goal of the Grid Application Development Software (GrADS) project is to make
the Grid simpler to use despite the dynamically changing status of Grid resources.
Protein and genome sequence alignment is a basic operation in bioinformatics, and
it requires large datasets and tends to be highly compute intensive. In this paper, we
present work done to grid-enable a biological sequence alignment package (FASTA)
and to run it under the GrADS framework. We discuss the advantages of using
GrADS framework for FASTA.
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1 Introduction

The Grid Application Development Software (GrADS) project [5] has defined
a framework to make it simpler to prepare and execute programs on a com-
putational Grid. In order to guide the development of this framework, an
implementation known as GrADSoft [8,9] was developed together with a set
of software packages that use the framework. This set of packages includes
the numerical linear algebra library ScaLAPACK [25], the astrophysics prob-
lem solving environment Cactus [2,19] and satisfiability solvers for circuit de-
sign [7].

This paper describes the work done to enable a parallel, master-worker im-
plementation of the biological sequence alignment application FASTA [24] to
run on the GrADSoft framework. There have been many implementations of
grid based sequence alignment applications. Our implementation is designed
to demonstrate several things. Firstly, it demonstrates the ease with which
the GrADS infrastructure can be used to grid-enable a legacy code. Secondly,
it acts be an example of a grid application bound by data locality, where the
computation must be scheduled at the site of the data.

Several projects provide generic facilities to run master-worker applications
on a grid, such as the Condor MW (Master-Worker) implementation [15],
the AppLeS Master Worker Application Template (AMWAT) [28] and the
NetSolve system [1]. The Condor MW and the AMWAT approaches require
that the application provide a specific programming interfaces that can be
called by a scheduler. The NetSolve interface is simpler, but it is designed only
for problems that can be decomposed into a bag-of-tasks that are executed
using a simple remote procedure call interface. All of these approaches would
require substantial changes to a pre-existing application, and none of them is
designed to schedule an application using the data-locality constraints (i.e.,
distributed, partial data sets) that are addressed in this work.

Spring and Wolski [30] discuss scheduling a Master-worker implementation of
FASTA on a metacomputer using application specific performance models. A
static schedule based on run time resource information and application specific
performance models resulted in a faster execution than simple self-scheduling.
But the best execution time was obtained with an adaptive approach that uses
resource information to schedule most of the work, and then self-scheduling to
complete. However, this work did not consider data-locality constraints when
making scheduling decisions.

There are many other projects aimed at enabling Grid resources to be used for
bioinformatics, including the Japanese BioGrid [6], North Carolina BioGrid
[22], MyGrid [21], and APBioGrid [4]. These projects generally provide a por-
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Fig. 1. The Grid Application Development Software (GrADS) Architecture

tal interface from which a user can run a specific set of programs on Grid
resources. In contrast, the GrADS project is designed to enable the end user
to run any arbitrary executable on the Grid resources in an transparent and
efficient manner.

2 The Computational Grid and the GrADS Project

Several Grid computing infrastructure projects exist to enable the use of ge-
ographically and administratively distributed resources, such as Globus [13]
and Legion [16]. However, developing and deploying applications across Grid
resources remains a user intensive process. Among other tasks, the user is
responsible for ensuring that all the required framework (e.g., libraries and
databases) exists on the Grid resources, that the resources are available and
not busy, and that the connectivity between the resources is sufficient. Ad-
ditionally, the user needs to track the execution of the application to ensure
that the Grid resources have not changed so as to cause the application to fail
or be unacceptably delayed.

The Grid Application Development Software (GrADS) [5] project is a multi-
university research project aimed at simplifying distributed heterogeneous
computing. The GrADS project provides tools and technologies for the devel-
opment and execution of applications in a Grid environment. In the GrADS
vision, the end user simply presents their parallel application to the framework
for execution. The framework is responsible for scheduling the application on
an appropriate set of resources, launching and monitoring the execution, and
if necessary, rescheduling the application on a different set of resources. A
high-level view of the GrADS architecture [17] is shown in Figure 1.

3



In GrADS, the Program Preparation System (PPS) handles application devel-
opment, composition, and compilation. The application code is transparently
manipulated to integrate software libraries and to prepare it for further pro-
cessing. An intermediate view of the application is developed (the Configurable

Object Program), which encapsulates all the results of this stage for later us-
age, including application specific performance models and data mappers.

The Program Execution System (PES) handles resource discovery, scheduling,
execution, performance monitoring and rescheduling. In order to execute an
application, the user submits the application parameters to the GrADS system
and the PES is invoked. The scheduler uses a grid run-time system which is
built on top of Globus Monitoring and Discovery Service (MDS) [13] and
Network Weather Service (NWS) [33] to determine the availability and status
of the appropriate grid resources. The performance model and mapper are
used by the scheduler to determine a good subset of the resources for the
execution. The binder compiles the code to the resource-specific format, and
enables the performance monitoring to take place. The application is then
launched on the scheduled resources. A real-time performance monitor tracks
the application performance on the grid resources, and if the performance
contract (i.e., expected performance behavior) [31] is violated, the rescheduler
may migrate the application to alternate resources.

3 Biological Sequence Matching and the Grid

Sequence matching is one of the most important primitive operations in com-
putational biology, often forming the basis of more complicated and sophis-
ticated operations. For example, projects that assemble DNA from shotgun
sequencing use similarity searches to find overlapping fragments. The two tasks
involved in matching sequences are similarity computation and alignment. In
similarity computation, a metric is calculated that measures the syntactic dif-
ference between two sequences. In the alignment task, the costs of additions,
deletions and substitutions required to match one sequence with the other are
calculated. The matrix of costs associated with the additions, deletions and
substitutions are determined by biologists. Sequence matching tasks often need
to be performed repeatedly over huge protein and genome databases.

The full pairwise sequence matching task is usually solved as using dynamic
programming technique, similar to calculating the edit distance between two
strings. Well known dynamic algorithms exist to compute the alignment (e.g.,
Smith-Waterman [29], Needleman-Wunsch [23]), however the computational
costs of these algorithms is high. With the size of the protein and genome
databases growing rapidly, the methods tend to be too slow on traditional
computing resources. Many heuristic approaches to speeding up the align-
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ment problem exist, two of the better known are the fast BLAST algorithm
[3] and the slightly slower, more accurate FASTA algorithm [24]. FASTA is
approximately 10-50 times faster than the Smith-Waterman algorithm and is
often used as a good compromise between speed and accuracy.

As of early 2005, the BioMirror archive [14] contains about 66 Gigabytes of
bioinformatics databases in compressed format from various sources, and this
collection is growing rapidly. Given the size and rate of growth of the protein
and genome sequence databases, it is undesirable to transport and replicate
all the databases at all the sites involved in a Grid. Our approach can use
databases that exist at a subset of the sites, bringing the computation to
the location of the data. Since searches over different parts of the reference
database can be carried out without any communication between nodes, the
sequence alignment application is an excellent fit for a Grid implementation.

There are many scenarios in bioinformatics that could benefit from data lo-
cality constraints so that large datasets do not need to be transferred over the
network. In one example scenario, all-to-all genome alignments over multiple
databases can be used to study phylogeny. In another example that could
benefit from data locality, the Encyclopedia of Life (EOL) project [18] seeks
to characterize all proteins encoded by publicly available genomes through
putative assignment of structures models and functions.

In this paper, we present one approach to adapting the sequence alignment
package FASTA [12] to run on a computational Grid.

4 FASTA, GrADSoft and Data Locality

The FASTA sequence alignment code developed by William Pearson [24,12]
was used as the base for this work. Pearson’s original MPI-based master-
worker implementation of FASTA assumed that the reference databases were
only available at the master node. This reference data was distributed using
messages from the master to the workers to provide an approximately equal
portion to each worker. Each worker was then sent a query sequence, which
was processed against its reference data, and the results were returned. The
master would collate all the results, and send out the next query sequence.

In the GrADS version of FASTA the reference protein and genome databases
are replicated on some or all of the grid nodes, either in whole or in part. This
is intended to reflect a real-world situation where multiple large databases are
created and located at distributed sites. These large databases should not be
shipped over the network, so computation has to be scheduled at the site of
the data so as to cover all the desired reference data and to complete as soon
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as possible. Aside from this change to FASTA’s startup routines, the original
code was left unaltered. One of the aims of the GrADS project is to grid-enable
pre-existing code with minimal (or preferably no) changes to the code.

In GrADSoft, static execution schedules are used to select the resources that
the application will use. These are developed using application specific perfor-
mance models. The specifics of scheduling are discussed in the next section.

During execution, the master sends a message informing each worker what
portion of which database it should load into memory. Since the worker nodes
on the Grid need not be homogeneous, in order to balance the workloads,
different amounts of work are scheduled at each worker. If necessary, workers
may also be assigned partial databases as their workload. The master node
then distributes query sequences to each worker and collects and collates the
results. This is repeated for each remaining query sequence.

The GrADS adaptation of FASTA provides an interesting scheduling challenge
due to the data locality requirement and large computational requirement.

5 Performance Model, Mapper and Scheduling

In GrADSoft, the performance model and mapper are compiled routines whose
input includes a set of machine and network parameters, and whose output
is the estimated execution time for the application on those resources. The
application specific performance model and mapper are loaded by GrADSoft
at runtime, and are used by the scheduler to evaluate possible schedules and
to guide a search process which selects an appropriate schedule for the appli-
cation.

The FASTA performance model estimates the execution time on a specific set
of Grid nodes given measures of machine and network characteristics (e.g., the
free memory, CPU power/availability and network latency and bandwidth).
These resource characteristics are obtained from Globus MDS and the Network
Weather System and may be statistically estimated into the near future. To
ensure good performance, the performance model requires that the reference
data fit completely in the available free memory. Performance on new CPUs
is estimated by a scaling factor based on the relative performance of a known
benchmark (i.e., matrix-matrix multiply) on the new CPU. This is obviously
a simplification, but the estimates were found to be acceptable.

The performance model was determined by running a variety of experiments
over query sequences and databases on unloaded systems. The observed exe-
cution times were fitted to a nonlinear model using on the length of the query
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Fig. 2. An overview of FASTA running on the Grid; system status and database
locality are used in making scheduling decisions

strings and the size of reference databases. Since there is no worker-to-worker
communication in this application, the only communication time to be esti-
mated was the time to distribute the queries to the worker nodes and collect
results. This model has been designed to extrapolate beyond the parameters
of the original experiments, but it can only be expected to be accurate within
those parameters.

A mapper is an necessary complement for the performance model. For a given
set of resources, the mapper allocates different amounts of work to the grid
nodes in order to minimize the overall execution time and cover all the de-
sired reference databases. The amount of work allocated depends on which
databases are available on each node and the status of the node and the net-
work. A linear approximation to the performance model is used to estimate
the execution time for different data distributions. A freely available linear
solver [32,20] was used to optimize the data allocation so as to minimize the
execution time. Figure 2 shows the GrADSoft framework using data locality
and resource information in order to make scheduling decisions.

Scheduling in GrADSoft works by presenting trial sets of eligible grid nodes
to the application specific performance model in order to obtain an estimated
execution time. The performance model calls the mapper to define a data
distribution over the nodes, and then returns the estimated time using this
data distribution and the current resource status. The set of nodes which have
then lowest estimated execution time for the problem are used for the final
execution. The scheduler generates the trial sets of nodes using deterministic
greedy orderings of all available nodes along with some prior network knowl-
edge so that nodes within a single cluster tend to be presented together. Other
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schedulers can also be used in the GrADSoft framework, for example, an ex-
haustive search scheduler exists and experiments have been performed using
a simulated annealing scheduler [34]. Several papers have discussed details of
the scheduling in GrADSoft [11,10,8].

The GrADSoft scheduler generates a static schedule for its applications by al-
locating the workers different portions of the reference databases. For master-
worker applications, self-scheduling and its variants can result in faster ex-
ecution times for many applications (see [28] for a study of master-worker
scheduling). However, Pearson’s original MPI master-worker implementation
was not designed for static scheduling, and since we are trying to demonstrate
the ease with which pre-existing codes can be grid-enabled by GrADSoft,
we have not changed that. Additionally, the data-locality constraint in our
implementation makes self-scheduling more complicated. Since the reference
databases may not exist at all workers, when a self-scheduled worker requests
additional work, it may be better for it to handle certain databases rather
than others.

6 Performance Contracts and Execution

A key feature of the GrADS architecture is the performance contract which
specifies an expected execution performance to be obtained on a set of grid
resources. A performance contract can be developed using the application spe-
cific performance model which takes into account the capabilities and current
state of the grid resources. Since we are dealing with a changing grid environ-
ment, there are many circumstances that may cause an application to violate
its performance contract. Some possible reasons for failing performance con-
tracts could be that other processes have been launched on the nodes, or the
communication links have become crowded.

In the program preparation phase, the GrADSoft binder component edits the
FASTA binary to enable performance monitoring. Calls to a performance mea-
surement and monitoring tool AutoPilot [27,26] are inserted into the binary.
These calls spawn a parallel thread which reports the status of the execu-
tion to an external AutoPilot manager program. AutoPilot monitors CPU
performance information in addition to other message passing measures. The
performance model and mapper specific to the FASTA application are loaded
for use by the GrADSoft scheduler.

During the program execution phase, GrADSoft uses the GrADS runtime in-
formation system to obtain current information about available grid resources.
The Scheduler uses this information with the performance model and map-
per to generate a near-optimal schedule for the application. The application
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is then launched on the selected grid resources, with a master process being
run on the first host and worker processes being run on all the other hosts.
The master process uses information from the mapper to inform each worker
which portions of what reference databases it should load into memory. For
each query sequence, the master sends the sequence to each worker, and col-
lects the replies from the worker. The master collates and prepares the results
for the user.

While the application runs, the AutoPilot monitor thread reports the status
to the AutoPilot manager. The external AutoPilot manager can be used to
present the user with various views of the performance measures in order to
determine if the execution is progressing as expected.

7 Summary and Conclusions

The goal of this work was to demonstrate that the GrADS architecture can be
adapted to handle applications with data-locality constraints, and that these
applications can be grid-enabled with ease.

GrADSoft greatly reduces the burden on the end user of finding, selecting
and using the appropriate grid resources for their application. Porting and
running FASTA, an master-worker sequence-matching application, was greatly
simplified. A performance model and mapper had to be constructed for the
application and minor changes were made to the FASTA code, in order to have
the workers use local databases rather than have the master distribute all the
data. After that, GrADSoft was able to handle all the details of scheduling,
executing and monitoring the application.

The GrADS architecture provides a plausible method for providing large
amounts of computing power to applications on demand. In this demonstra-
tion, the logistic tasks of scheduling, moving the application to the site of the
data and gathering the results are handled by the framework. With the rapid
growth of large, distributed data collections in fields such as biology, astron-
omy, and physics, the techniques described here could find wide applicability.
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