e e mateaaAnvAUaanes A A sAAe A Siie AC AU SAAU v e A AU~ o~ ULaaas

e TR

Batched sparse iterative solvers on GPU for the
collision operator for fusion plasma simulations

Aditya Kashi', Pratik Nayak!, Dhruva Kulkarni?, Aaron Scheinberg?, Paul Lin?, Hartwig Anzt!*
IKarlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA
3Jubilee Development, Cambridge, USA
4University of Tennessee (UTK), Knoxville, USA
aditya.kashi @kit.edu, pratik.nayak @kit.edu, dkulkarni@Ibl.gov, aaron@jubileedev.com, paullin@Ibl.gov hartwig.anzt@kit.edu

Abstract—Batched linear solvers, which solve many small
related but independent problems, are important in several
applications. This is increasingly the case for highly parallel
processors such as graphics processing units (GPUs), which need
a substantial amount of work to keep them operating efficiently
and solving smaller problems one-by-one is not an option.
Because of the small size of each problem, the task of coming
up with a parallel partitioning scheme and mapping the problem
to hardware is not trivial. In recent history, significant attention
has been given to batched dense linear algebra. However, there is
also an interest in utilizing sparse iterative solvers in a batched
form, and this presents further challenges.

An example use case is found in a gyrokinetic Particle-In-
Cell (PIC) code used for modeling magnetically confined fusion
plasma devices. The collision operator has been identified as a
bottleneck, and a proxy app has been created for facilitating
optimizations and porting to GPUs. The current collision kernel
linear solver does not run on the GPU—a major bottleneck.
As these matrices are well-conditioned, batched iterative sparse
solvers are an attractive option.

A batched sparse iterative solver capability has recently been
developed in the GINKGO library. In this paper, we describe
how the software architecture can be used to develop an efficient
solution for the XGC collision proxy app. Comparisons for the
solve times on NVIDIA V100 and A100 GPUs and AMD MI100
GPUs with one dual-socket Intel Xeon Skylake CPU node with
40 OpenMP threads are presented for matrices representative of
those required in the collision kernel of XGC. The results suggest
that GINKGO’s batched sparse iterative solvers are well suited
for efficient utilization of the GPU for this problem, and the
performance portability of GINKGO in conjunction with Kokkos
(used within XGC as the heterogeneous programming model)
allows seamless execution for exascale oriented heterogeneous
architectures at the various leadership supercomputing facilities.

Index Terms—Sparse linear systems, batched solvers, GPU,
performance portability, GINKGO, XGC, ITER, WDMAPpP,
fusion, simulation

I. INTRODUCTION

Alternate energy sources based on magnetically confined
fusion plasmas, e.g. the International Tokamak Experimental

This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. Some work in this paper
was also performed on the HoreKa supercomputer funded by the Ministry
of Science, Research and the Arts Baden-Wiirttemberg and by the Federal
Ministry of Education and Research, Germany.

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00024

157

Reactor (ITER), operate in a parameter space that is cur-
rently inaccessible to experiment. Design choices are therefore
driven by high fidelity numerical simulations that require
exascale computing capabilities. Many of the current pre-
exascale capable architectures as well as the two upcoming US
Department of Energy (DOE) exascale capable architectures
are heterogeneous and incorporate both CPUs and GPUs. As
typically 80%-90% of the peak performance of these platforms
is in the GPUs, it is critical to efficiently exploit the GPUs
to accelerate hotspots in the simulation codes. One such
simulation is the WDMAPP project, which aims to model the
plasma in the entire fusion device. Different application codes
in WDMAPP are used to simulate the plasma depending on
the location within the device — the gyrokinetic Particle-In-
Cell (PIC) XGC code is used for modeling the plasma close
to the edge.

XGC implements a non-linear Fokker-Planck-Landau col-
lision operator on a two-dimensional velocity grid capable of
simulating multiple species of particles in a plasma (ions, elec-
trons). The ‘collision’ step — describing Coulomb collisions
between particles in the plasma — has been identified as a
bottleneck in XGC, and a proxy app (referred to as the ‘col-
lision kernel’) has been created for facilitating optimizations
and porting to GPUs. Currently, the collision kernel utilizes
MPI for multiple CPU nodes, and Kokkos [10] to offload to
GPUs as well as utilize OpenMP for intranode parallelism.

Within the collision kernel, a linear solver is employed in a
Picard iteration. This linear solver is the only remaining part of
the collision kernel not yet ported to GPUs. The banded solver
‘dgbsv’ from LAPACK is currently used to solve this system
on the CPU. As these matrices are sparse with low condition
numbers, sparse iterative solvers are a viable option. Batching
ensures that the GPU is utilized fully and also fits well within
the batching scheme of the collision kernel (batching over
spatial mesh nodes). Thus, batched sparse iterative solvers are
an attractive option for the XGC collision kernel solver.

Fine-grain parallel implementation of batched sparse itera-
tive solvers is challenging for several reasons. GPUs have a
hierarchy of memories, with different bandwidths and access
latencies, and a hierarchy of compute cores with different
communication mechanisms; this makes batched solver im-

plementation complex. Different types of problems may need
different sparse storage formats and different algorithms for
solver components, while different optimizations are needed
for different sizes of problems. Additionally, different systems
within a batch may converge at different rates. Thus, along
with efficient algorithms, flexibility is required in the software
architecture for iterative solvers. However, this has to be
coupled with management of kernel launch overhead and
efficient memory use.
To this end, we list our key contributions:

1) We develop batched sparse matrix vector kernels for two
batch matrix formats, BatchCsr and BatchEll for
NVIDIA GPUs and AMD GPUs.

We integrate these sparse matrix kernels along with
specialized, tuned BatchDense kernels to construct
batched iterative solvers and show results for the
BiCGSTAB Krylov solver with a Jacobi preconditioner.
We tune the batched BiCGSTAB solver for the matrices
from the XGC and also provide an automatic tuning
strategy depending on the size of the matrix.

We analyze the performance using NVIDIA Nsight
Compute and AMD rocprof and present the performance
achieved in the context of the theoretical peak of the
GPU.

We provide a production level implementation of these
Batched solvers within GINKGO [3], which is readily
available for applications along with examples.

2)

3)

4)

5)

In Section II, we describe the factors that demonstrate the
need for high-performance batched linear solver for the XGC
collision kernel. Existing literature and work on batched solver
and batched routines are explored in Section III. A brief
overview of GINKGO’s batched capabilities, and algorithmic
and other optimizations to improve its performance on the col-
lision kernel, are described in section Section IV. Comparisons
for the solve times on NVIDIA V100 and A100 GPUs with
one dual-socket Intel Xeon Skylake CPU compute node with
40 OMP threads are presented in section Section V.

II. MOTIVATION
A. XGC proxy app

XGC is a 5D full-function gyrokinetic particle-in-cell (PIC)
application code that numerically simulates fusion edge plas-
mas. A nonlinear collision operator is required to accurately
model edge plasmas. Therefore XGC employs a nonlinear
Fokker-Planck-Landau operator in the 2D guiding-center ve-
locity space for multiple particle species. An implicit time
integration method is employed and a Picard method for the
nonlinear solver. At each configuration space grid node, the
nonlinear operator is solved on the 2D velocity space grid.
Production simulations currently employ the LAPACK banded
solver dgbsv on the CPU for the linear solve. However, as
more and more of XGC is ported to GPU, the dgbsv time
on the CPU becomes a larger and larger fraction of the run
time, hence the need for a fast and efficient linear solver on
the GPU.

158

o EEEN

Fig. 1: Profile of one Picard loop of the collision kernel proxy
app showing time spent on CPU (black), GPU (blue), and
memory transfer (red: Device to Host, green: Host to Device)

A proxy app for the collision kernel has been developed
using Kokkos for providing a performance portable layer for
GPU offloading. The proxy app is parallelized over spatial
mesh nodes and is embarrassingly parallel. While the future
XGC application is expected to simulate multiple ion species
(~10) and electrons, the proxy app currently simulates a
plasma with one ion species (along with electrons). A back-
ward Euler time discretization and Picard iteration is employed
for the two species for every mesh node. The Picard loop
typically requires five iterations for convergence. Figure 1
shows the execution timeline of one such Picard iteration
captured on one MPI rank with multiple OpenMP threads on
the CPU and one GPU - the top half of the figure (black
rectangles) shows CPU execution of the linear solver employed
in the Picard iteration and associated processing, while the
bottom half shows GPU execution (blue rectangles) as well as
data transfer (red and green rectangles). As seen in Figure 1,
a significant portion of the execution time for the Picard loop
(~48%) is on the CPU - of which a majority of the time is
spent in the solve (dgbsw call) itself (~66%). In addition, data
on the GPU needs to be transferred back and forth between
the GPU and the CPU to employ a linear solver on the CPU -
which causes additional overhead (~9%) and would limit the
possibility of exploiting direct GPU - GPU memory transfer
in the future. Thus, XGC would greatly benefit from porting
the solver to the GPU.

The matrix sizes utilized in the main application are on the
order of 102 and possess a sparsity pattern arising from the use
of a nine point stencil (9 non-zero elements per row). For these
sizes and bandwidth, using dense solvers on the GPU is not
enough to beat the gain obtained from exploiting the banded
nature of the matrix on the CPU. Thus, sparse solvers on the
GPU are required, and need to be batched to fully saturate the
GPU. Further, as the XGC matrices exhibit a low condition
number, iterative batched sparse solvers may prove to be most
efficient for utilizing the GPU for these types of problems.

We see in Figure 2 that the matrices for the ion and the

101+« + electron
wl’? . ion
= 54
X
g 04 S
)
© .
= o
2 51§
E .

10

0.0 0.5 1.0 15

Log(10) real part

Fig. 2: Eigenvalues of the matrices for the two species

electron have quite different eigenvalue distributions. For ions,
the eigenvalues are more or less clustered around 1.0 (note the
log real axis) which will lead to very quick convergence, while
electrons have a greater range of real parts of the eigenvalues
which means it will take some more iterations to converge.
That being said, they are both well-conditioned enough to take
good advantage of iterative solvers as neither of them has very
large or very small eigenvalues.

One solution for solving a batch of small sparse problems
would be to assemble them into block-diagonal matrices with
sparse diagonal blocks. This larger system may have a size
suitable to utilize the entire device. However, in such a method,
the number of iterations over the entire block system would
be determined by the most difficult individual problem. Global
synchronization points would be introduced in the iterations,
leading to greater synchronization overheads. Further, even
if the problems have a common sparsity pattern, the global
sparse matrix format would require duplication of the pattern
for every block. While this is not discussed further in this
paper, internal experiments have shown that such a method is
slower than the proposed batched iterative solvers.

III. RELATED WORK

With the advent of parallel computers, there has been some
effort in using BLAS and LAPACK routines in a batched
fashion to take advantage of the embarrassing parallelism that
these batched functionality can provide. Recently, a batched
BLAS interface was also proposed [9] to allow the vendors and
the library providers to implement a uniform function interface
for the batched functionality. This set of batched routines has
also been expanded to LAPACK [1].

For the GPU, there has also been some work in the direction
of batched dense inversions for Block-Jacobi preconditioners
[4] and for smaller solving small dense problems in batched
mode [11]. Factorizing batched dense matrices has also re-
ceived attention, particularly for LU factorization, using the
DGETRF () routine [8].

While batched dense linear algebra has received attention in
recent years, batched sparse and iterative solvers remain an un-

159

explored space. In terms of batched sparse direct solvers, there
has been some work on tridiagonal and pentadiagonal systems.
NVIDIA cuSparse provides the gt sv2StridedBatch rou-
tine based on variants of cyclic reduction.

Other methods for tridiagonal and pentadiagonal matrices,
some of which have been adopted in cuSparse, have also been
proposed [6], [12], [17]. These methods, as opposed to the
currently proposed algorithms, aim to specifically solve tri-
diagonal and penta-diagonal systems and thus have algorithms
specific to such systems based on the well-known Thomas’
algorithm. Further, the solve stages on the GPU are not fine-
grain parallel since they aim to have exact solves. Each GPU
thread solves an entire linear system, and the storage of the
systems in the batch is interleaved to provide coalesced access.
While such a scheme is certainly robust and has advantages for
certain applications, it does not provide the best performance
when the exact solution (relative to machine precision) is not
required and the problem is relatively well-conditioned. In the
case of work that includes pentadiagonal systems [6], [12], the
factorization step is performed on the CPU, necessitating data
transfer for the triangular solves.

For general sparse matrices in compressed sparse row (CSR)
format, a batched sparse QR factorization and solve is avail-
able in Nvidia’s cuSolver library [15]. The general dogma has
been that with relatively small linear systems, direct solvers
are more effective. While this is true for some cases, flexibility
provided by the iterative solvers in terms of early stopping, re-
use of initial guess and adaptability to matrix properties can
make them very attractive even for relatively small problems.

IV. IMPLEMENTATION OF BATCHED ITERATIVE SOLVERS

In this section, we elaborate on the implementation of the
batched iterative solvers in GINKGO. We motivate our design
choices, explore sparse matrix formats suitable for the matrices
involved in the collision kernel and showcase the optimizations
necessary to fully utilize the resources available. As we mainly
concentrate on GPU implementations, we discuss terms in the
context of GPU programming (CUDA/ ROCm), but most of
these ideas carry over to the hierarchical memory multi-core
CPU architectures.

The objective of a batched solver interface is to utilize
the embarrassing parallelism provided by the problem to the
highest extent possible, while taking advantage of fine-grained
parallelism to solve the individual systems. The criteria that
influence the design and implementation are the following:

1) The size of the individual batch entries: the number of
rows and number of non-zeros.

The number of linear systems to be solved.

Common sparsity patterns between the batched matrices,
if any.

Properties of the batched linear systems that influence
convergence (condition numbers etc.)

2)
3)

4)

On the other hand, the following performance considera-
tions influence the design and implementation:

1) Keeping data as close as possible to the GPU compute

units. For batched problems, the data corresponding to

individual systems may be small enough to persistently
store them in higher levels of memory, such as local
shared memory and L1 cache, which have much lower
latency.

To a lesser extent, kernel launch overhead needs to be
managed when dealing with small individual problems.

2)

A. Batch matrix storage formats

Batched solvers are favorable in cases where the individual
matrices are small, and large numbers of these linear systems
need to be solved. Additionally, shared sparsity patterns allow
for reduced storage, storing the sparsity pattern only once,
while storing the values of all the entries.

Even for batched matrices with small individual matrix
sizes, sparse storage formats can be beneficial. Batched linear
systems may share sparsity patterns eg. if these linear systems
arise from similar local physics at many grid points or one
wants to solve multiple independent problems that all employ
the same discretization scheme. This allows us to store a single
common sparsity pattern and cache it if possible to minimize
the data movement. To this end, we implement two batch
matrix formats, one general BatchCsr, and one specialized
BatchEll.

The BatchCsr matrix format is based on the popular
Compressed Sparse Row matrix storage format, where one
stores an array of column indices per row corresponding to
each non-zero value in the matrix. An accumulated sum of
the number of non-zeros per row is additionally necessary.
This matrix format is suitable for general matrices with large
variations in the number of non-zeros per row and performs
generally well for most matrices. The BatchCsr is an
extension of this format where we store the column indices
and the row pointers for only one matrix and store the values
of all the matrices.

For matrices that have a similar number of non-zeros in
every row, we can optimize the storage by padding the rows
to a uniform number of non-zeros per row, removing the need
for a pointers array. This also gives us additional advantages
in terms of coalesced accesses. The BatchE11l matrix format
stores one set of column indices and the values of all the
batch entries. In contrast to BatchCsr, we store the column
indices and the values in column-major allowing for coalesced
accesses which is suitable for GPUs.

Figure 3 shows the schematic and the storage require-
ments of BatchCsr and BatchEll compared to the
BatchDense format. With batched sparse matrix formats,
the additional cost of storing the indices and the pointers can
be easily amortized over an increasing number of systems in
the batch. The storage requirements are:

1) BatchDense:
num_matrices x num_nnz_per_matrix
2) BatchCsr:
[num_matrices x num_nnz_per_matrix]
+ [(num_rows + 1) x 1]
+ [num_nonzeros_per_matrix x 1]

160

1 0 0 2 8§ 0 0 9
03 0 0 0 10 0 0
0 4 5 0 0 11 12 0
6 0 0 7 13 0 0 14
Batch 1 Batch 2
BatchDense

row_ptrs: [0 2 3 5 71 colidxs:[0 110 3 0 2 3]

values:[1 3 4 6 2 0 5 7
8 10 11 13 9 0 12 14]

colidxs: [0 31120 31

values:[12 3 45 6 7
8 9 10 11 12 13 14l
BatchCSR

num_nnz_per_row: 2

BatchELL

Fig. 3: Batch Matrix Storage formats - BatchDense,
BatchCsr and BatchEll

Sparsity pattern - Matrix size - 992 x 992, nnz: 8854
0

100

200

300

400

500

600

700

800

900

992

0 100 200 300 400 500 600 700 800 900 992

Fig. 4: Sparsity pattern of an individual entry of the batched
matrix: 992 rows, 9 nonzeros per row.

3) BatchEll:
[num_matrices x num_nnz_per_matrix]
+ [num_nnz_per_row X nhum_rows x 1]

The matrices involved in the XGC simulations all share
the sparsity pattern shown in Figure 4. They originate from
a 2D-nine point stencil discretization. The matrices are not
numerically symmetric. The eigenvalue distribution is shown
in Figure 2.

The sparse matrix vector product (SpMV) kernel is the
workhorse of the iterative solvers we employ, hence it is
important to optimize this kernel. From the sparsity pattern
in Figure 4, we see that the matrices have a uniform number
of non-zeros per row, which makes the BatchEll matrix
format well-suited for this problem.

B. Iterative and Direct batched solvers

In contrast with monolithic non-batched solvers, batched
solvers can take advantage of the shared sparsity pattern
and also solve the different independent linear systems in
parallel. Batched dense direct solvers have been widely used
in literature [2], [5]. Efforts in the direction of sparse batched

direct solvers have been limited to special systems such as
banded, tri-diagonal or penta-diagonal systems [6].

The XGC proxy app uses the LAPACK banded solver,
dgbsv as a batched solver on the CPU. It employs one CPU
core to solve one individual system and utilizes all available
cores on the CPU to solve the batched systems in parallel. On
NVIDIA GPUs, the cuSOLVER batched sparse QR routine,
which uses the BatchCsr matrix format, is the only available
batched sparse solver for general (non-banded) matrices. As
of writing, there is no other batched sparse solution provided
by GPU vendors.

While direct solvers always solve the system to the full
precision of the underlying type, iterative solvers come with
the option of tuning the tolerance to solve the systems to the
required precision. This makes iterative solvers attractive when
an ‘exact’ solve is unnecessary; this is the case in several
engineering applications and especially when the linear solve
is part of a nonlinear solver. Another advantage of the iterative
solvers is that we can provide an initial guess. As the outer
non-linear solver in XGC does Picard iterations, the solution
of the previous step proves to be a good initial guess for the
subsequent solve.

We implement batched versions of several preconditionable
iterative solvers. The problems we target here have relatively
low condition numbers and relatively well-behaved eigenvalue
distributions. Empirically, we observed that BICGSTAB [18]
was the most efficient solver and hence we show all our results
with the BiCGSTAB solver.

Composability of different preconditioners, solvers, and
stopping criteria requires careful design to ensure flexibility
while not sacrificing performance. This is particularly im-
portant in the batched case because the individual matrices
are much smaller than in monolithic solvers. For optimal
performance, we would like to (1) reduce the number of kernel
launches, (2) minimize the data movement from the global
memory and cache as much data as possible, (3) allow the
compiler to be able to optimize the composite kernel, (4)
maximize the occupancy of the GPU by utilizing as many
warps as possible and (5) provide the GPU run-time with the
freedom to schedule the different batches as necessary.

Regular (monolithic) iterative solvers are typically imple-
mented to be highly flexible while launching separate kernels
for the different components such as preconditioners, matrix-
vector products etc. However, this means that much of the
data has to be fetched again from memory when executing
the different components one after the other, and also when
executing consecutive iterations of the solver. There is an
extra latency associated with repeated kernel launches. These
considerations are not important for larger problem sizes.
However, for problems that are small and when the individual
operations in the solver complete very quickly, these kernel
launches can incur significant overheads. Therefore, we design
a GPU kernel that accumulates the entire iterative solver
execution, including all its components and iterations, into
a single kernel launch. In order to avoid the overhead of
launching a kernel at every iteration, we place the iteration

161

stepping loop within the solver kernel. Each thread maintains
its own copy of the iteration count. As one thread-block solves
one linear system and can synchronize at a relatively low cost,
the value of the iteration count is the same for all threads in
a thread-block.

To preserve flexibility in the choice of solver components in
a single kernel design, we use C++ templating to generate ker-
nels for the different combinations of preconditioners, solver,
and stopping criteria. This incurs the cost of instantiation
at compile time, while keeping the code maintanable and
extensible. This also makes sure that the individual SpMYV,
solver, and preconditioner kernels are inlined, allowing the
compiler to optimize the entire kernel as a whole.

Listing 1: CUDA kernel signature

template <typename StopType, typename PrecType,
typename LogType, typename BatchMatrixType,
typename ValueType>

__global_ void apply_kernel (int padded_length,
const StorageConf config, int max_iter,
remove_complex<ValueType> tol,
LogType logger, PrecType preconditioner,
const BatchMatrixType a,
const ValueType *__restrict__ b,
ValueType *__restrict_ x,
ValueType *__restrict__ workspace)

Listing 2: Kernel call site

apply_kernel<stop::SimpleRelResidual<ValueType>>
<<<nbatch, block_size, shared_size>>>(
shared_gap, config, max_its, residual_tol,
logger, PrecType<>(), a,
b.values, x.values, workspace);

Iterative solvers do not execute a pre-defined sequence of
operations or iterations, but adapt the number of iterations to
the problem at hand to provide a solution of the desired quality.
Some systems of the batch may require more iterations than
others for the same solution quality. Either all the systems
need to be iterated until each of them has achieved the desired
solution quality, or each system can be monitored individually
allowing independent termination and logging for each linear
system in the batch. Forcing all the systems to iterate until the
“worst” system has converged in a SIMD fashion is inefficient
because we are wasting resources on converged systems and
additionally can also tend to diverge the already converged
systems due to stability issues.

Monitoring the iteration process for all systems individually
and scheduling the next system to resources where the iteration
process has completed on the other hand makes more efficient
use of the available resources. While this breaks up the SIMD
execution style of the batched routine as different items of the
batch are potentially handled with a different iteration count,
if each of these systems is handled by a distinct compute
unit, thereby removing the need to communicate between the
compute units, it can provide optimal performance.

For the design and interface of batched sparse iterative
solvers, the system-individual convergence monitoring re-
quires a decision on which metric to monitor, and how to

define the thresholds. We decided to integrate a simple but
customizable stopping criterion for the residual norm. Cur-
rently available stopping criteria include a pre-defined relative
residual norm reduction factor, as well as an absolute residual
threshold.

C. Parallel execution on GPUs

GPUs are organized into parallel compute units (CU),
each having its local data caches and shared memory. For
the batched solvers, we would like to saturate these units
by maximizing their cache and shared memory usage and
reducing unnecessary loads from the global memory. The
executing threads are grouped into thread blocks, which are
further sub-divided into warps/wavefronts, which operate in a
lock-step fashion. As GPUs require this kind of fine-grained
parallelism, it is efficient to assign the solution of one batch
entry to one thread block. Each thread block consists of threads
that execute on a compute unit and work in parallel. Hence the
solution of each batch entry also can be performed in parallel.

We have two kinds of data to deal with. First is the read-
only data which includes the batch matrix indices, values and
pointer arrays, and the right-hand side vector data. Ideally, we
would like the entire matrix and RHS vectors to be cached for
all the batch entries in the L1 data cache, maximizing the data
reuse and minimizing cache misses. Second is the read-write
data which includes the auxiliary vectors of the solver and
the solution vector. Ideally, we would like to store this data
in the local shared memory of the compute unit, therefore
minimizing the main memory accesses to these arrays that
are frequently written to. The local shared memory is shared
between the threads of a single thread block, therefore using
this for read-write arrays allows for efficient communication
between the threads.

Table I shows the characteristics of the three GPUs that
we run the batched solvers on. The number of compute
units represents the number of independent multi-processors
available on the GPU. The L1 data cache + shared memory
size per compute unit signifies the amount of memory available
in each of the compute units. The NVIDIA GPUs have the
freedom to look at the L1+shared memory as a single memory
level. For example, on the V100, 32 KB is reserved per CU for
the L1 cache, while the shared memory per CU is configurable
upto 96 KB. Memory that has not been requested by the kernel
as shared memory is automatically used as L1 data cache
thereby increasing the amount of L1 data cache available. On
the AMD MI100, the shared memory is set to 64 KB per CU
and the available L1 cache is 16 KB.

D. Automatic configuration of shared memory.

Krylov solvers require some intermediate vectors and
scalars to perform their iterations. For batched solvers, it is
desirable to keep not only the matrix and right-hand side
in fast memory close to the compute unit, but also these
intermediate vectors. Unlike the matrix and right-hand side,
these intermediate vectors are not read-only, but are modified
by the kernel.

162

There are two ways to allocate a certain amount of shared
memory for a kernel: static allocation of the memory at
compile time, and dynamic allocation at run-time. We utilize
dynamic shared memory allocation for all vectors. This allows
us to decide at run-time the amount of needed shared memory
depending on the size of the linear system to be solved.

Algorithm 1 BiCGStab solver. Vectors in red are ‘interme-
diate vectors’ involved in matrix-vector products; these are
the most preferred to be allocated in shared memory if space
remains as SpMVs account for a large part of the batched
solver execution time. Those in blue are other intermediate
vectors which are allocated in shared memory only if space
remains after all the red vectors have been allocated. Those
in green are constant matrix or vectors.
r<—b—Ax, 7+ r,p+0,v+0
p—liw+la«1
for i < N, do
if ||| < 7 then
Break
end if
peror
B B2
p <1+ B(p—wv)
P < PRECOND(p)
U Ap
o= iﬁv
S+ 1r—av
if ||s|| < 7 then
T x+ ap
Break
end if
§ <+ PRECOND(S)
t <+ AS
w4 L
x4 x+ap+ ws
r<i—8s—wt
plp
end for

Currently, we always allocate the matrix and right-hand
side in global memory; since these are read-only, they can
be cached in L1 data cache. The allocation of vectors needed
by the BiCGStab solver is described in Algorithm 1. Any left-
over vectors that could not be allocated in shared memory are
allocated for all the linear systems in a block of global mem-
ory. Finally, a structure object is generated, which contains a
few integers that encode the information about which vector
is assigned to what memory space. This is passed to the GPU
kernel where it is used to assign pointers correctly to dynamic
shared memory and global memory. As an example, BiCGStab
requires a total of 9 vectors, including the 4 ‘SpMV vectors’.
On the V100, this method allocates 6 vectors in local shared
memory, while the remaining 3 vectors are allocated in global
device memory.

TABLE I: Some relevant theoretical performance numbers for different processors [7], [14], [16]

Architecture Peak FP64 ~ Main memory BW (L1 + shared memory) /CU L2 data cache # of SMs/CUs
(TFlops) (GB/s) (KB) (MB)

NVIDIA A100-40GB (Ampere) 9.7 1555 192 40 108
NVIDIA V100-16GB (Volta) 7.8 990 128 6 80
AMD MI100-32GB (CDNA) 11.5 1230 16+64 8 120
Intel Xeon Gold 6148 (single) 1.0 128 64 20 20

E. The workhorse: BatchCsr and BatchEll SpMV ker-
nels.

To reduce the data movement to and from the global
memory, we would like to avoid communication between
thread blocks. Therefore, we assign one thread block to solve
one system. With the fine-grained parallelism in GPUs, it is
desirable that each thread block contains a number of threads
proportional to the size of an individual linear system. This
means that we need to tune our thread block sizes according
to the problem size. However, based on the register usage by
the kernel, there is a limit to how many threads can be used
to solve one batch entry.

For the BatchCsr SpMV, we assign one warp to a row to
enable coalesced access to the values in the row. Therefore,
we configure the number of warps in the thread-block to be
proportional to the number of rows, up to the limit imposed
by the register use. For matrices with many rows and few
non-zeros per row, this makes sub-optimal use of each warp,
while requiring many warp iterations to traverse all the rows.
For such cases, the BatchEll SpMV kernel is a better
option. Each row is handled by one thread sequentially, thereby
removing the need to communicate between the threads and
the need for warp-parallel reductions. This is illustrated in
Figure 5. For our case of a 9 point stencil, this approach
works well with each thread handling 9 elements per row and
achieving good load balance. For matrices with more elements
in a single row, it might be necessary to have multiple threads
working on one row.

V. EXPERIMENTAL EVALUATION

In this section, we report on the performance of the pro-
posed batched iterative solvers on batches of matrices from
the XGC mini-app. These batches consist of repetitions of
ion and electron matrices similar to XGC runs. At the outset,
we note that we let each system converge to an absolute
residual tolerance of 10719, Conservation of relevant physical
quantities in XGC to a pre-decided threshold (10~7) was met
with a minimum tolerance of 10~'° in the GINKGO batched
iterative solver. Increasing the linear solver tolerance above
10710 resulted in the Picard loop not converging up to 100
iterations. Except for Figure 8 and Figure 9, all the figures
show results from batch matrices containing both electrons
and ions. The number of electron matrices is equal to the
number of ion matrices in every batch that was run. While
collecting the timing data, each case was repeated 10 times and
averaged. We observed a very low insignificant variance. The
CPU platform on which we run the XGC proxy-app solver
is an Intel Skylake node with two sockets of the Xeon Gold

163

6148 processor. Each socket has a total of 20 cores with the
total core count in the entire node equal to 40.

We run our experiments on the following machines with the
respective settings:

1) V100: On Summit with GCC 9.1 and Cuda 11.0.3.

2) A100: With NVHPC 21.7 compiler suite.

3) MI100: With LLVM/Clang 12.0 and ROCm 4.2.

4) Intel Skylake: With NVHPC 21.7 compiler suite.

In Figure 6, we show timings obtained on single linear
solves on the Nvidia V100, Nvidia A100 and AMD MI100,
and how they compare with the LAPACK batched banded
solver, parallelized over different matrices on the Intel Skylake
node. We study the effects of using the two sparse matrix
formats, and we also compare against the batched sparse direct
QR solver cusolverSpScsrgrsvBatched available in
the cuSolver library.

It is immediately clear from Figure 6 that the batch sparse
direct solver is not competitive for these problems. These ma-
trices are sufficiently well-conditioned for the BiCGStab solver
to converge in just a few iterations and therefore the work
done to solve the system using an exact factorization does not
pay off. The cuSolver implementation only implements the
BatchCsr format which is favorable for factorizations and
triangular solves. On the other hand, BiCGStab even with the
BatchCsr format is approximately 10 to 30 times faster for
our range of batch sizes (Figure 6).

From Figure 6 we also see that LAPACK’s banded solver,
dgbsv (the blue line labelled ‘Skylake’) is very efficient
for this problem. Kokkos is used to parallelize the batch
solve: it runs each banded solve as a work-item on one core,
distributing the systems in the batch among 38 of the 40
available cores on the Skylake node. It outperforms both the
cuSolver batched QR on V100 and our batched BiCGStab
with BatchCsr format on the MI100 GPU. This can mainly
be attributed to the fact that dgbsv uses a banded storage
format and this problem is well suited to it, coming from a 9-
point stencil discretization. We can also observe that batched
BiCGStab with BatchCsr on NVIDIA GPUs is able to
outperform dgbsv on Skylake, while batch BiCGStab with
BatchEll is significantly faster.

We observe a significant difference in the performance of
BatchCsr and BatchEll for this problem on all three
GPUs. Since this is a banded problem with 9 non-zeros per row
except in rows corresponding to boundary points of the grid,
(1) it is well-suited to a uniform rectangular storage block with
very little padding necessary (only for the boundary points of
the grid) and (2) with only 9 non-zeros per row, the warp-
parallel reduction used by our BatchCsr SpMV is not able

< smoy

Stencil entries —

— smoy

(a) CSR
Stencil entries —

(b) ELL

Fig. 5: Two possible layouts of the non-zero coefficients’ array
of a matrix with some arbitrary sparsity pattern. Green bars
show how the warps are oriented for a fictitious warp length

of 6.

TABLE II: Performance metrics on different platforms with
the two batch matrix formats (L1 cache data was not available

for the AMD MI100)

Processor, format | Wavefront /warp use | LI hit rate | L2 hit rate
% % %
V100, CSR 75.1 50.7 63.1
V100, ELL 98.2 245 63.1
A100, CSR 72.9 76.6 97.2
A100, ELL 98.2 74.5 94.8
MI100, CSR 52 - 86
MI100, ELL 94 - 88

to utilize the warp completely. For all our experiments with
the BatchE1ll format, we store 9 non-zeros per row. With
different threads in a warp operating on different rows, and
with 992 rows in the matrix, the warp is well-utilized. Each
row is processed sequentially, and hence 9 warp-iterations are
needed to process all the columns in each row. The data is
stored column-major to make sure we get coalesced memory
accesses
With BatchCsr, a warp of 32 threads has only 5 threads
(9 divided by 2, rounded up) active in the first reduction stage,
therefore the warp is not well-utilized. This is exacerbated in
the AMD GPUs which have a warp (wavefront) size of 64,
thereby providing us with higher speedups for BatchEll
compared to BatchCsr. This is corroborated by wavefront
(warp) utilization data from the ROCm profiler, rocprof£.
On the entire BiCGStab solve, we observe an overall high
wavefront utilization with batch ELL (Table II).
We also note the clear step-like trend for the AMD GPU.
There are discrete jumps at multiples of 120 because the
MI100 has 120 compute units. To schedule the next system
after a multiple of 120, the scheduler needs to wait for one of
the compute units to be available. Let us consider the curves
for the BatchEll format on the MI100 (red circles) and
on the V100 (yellow circles) in Figure 6. The V100 has a
smooth trend in the time to solution and does not exhibit
jumps at multiples of its number of compute units (80). It
is able to solve the problem in less time than what is needed
to schedule and complete an entire grid of thread-blocks when
there are only a few matrices left to solve. This may be
due to more flexible scheduling of the thread-blocks on the
V100 compute units (SMs) with which they are able to take
advantage of the non-uniform convergent behavior of the ion-
electron composite batch system.

The right figure in Figure 6 shows the variation of the
average time for the solution per batch matrix entry as a
function of the batch size. These curves clearly show that with
increasing batch size, time to solution needed per batch matrix
entry decreases showing that we are saturating the GPU.

In order to isolate the impact of the sparse matrix format, we
show in Figure 7, the timing plots for the sparse-matrix vector
kernel for both the BatchCsr and the BatchEll formats
on the A100 GPU. We observe that due to factors previously
mentioned, the BatchEl1l format is the superior format for

the problem at hand.
With iterative solvers, we have the ability to provide con-

164

» Lt G 10
10 “.’““’.‘, 030804034000%407440500 %00 teeoPesee e
3202224 b
=
= £ 10"
by 5
Q aQ
£ g2 o
= 10
0 E
= o 10
o (]
3 2
]
(2]
[
-3 ; -2
10 o 10
(]
=
1]

100 200 300 400 500 600
batch size

0

processor
—— Skylake
V100
— A100
— MI100
solvertype_matrixformat
—— bicgstab csr
--e-- Dbicgstab ell
-4 gparse_direct csr

--#+-- dgbsv banded
200 300 400 500 600
batch size

100

Fig. 6: Time taken by different solvers, with different matrix formats, on different platforms, as a function of the batch size

(left: total time per solve, right: time per matrix entry)

TABLE III: Number of iterations needed for the linear solve

—— batch_csr ey inside successive Picard iterations using the previous Picard
T batch_ell iteration solution as initial guess (With BatchEll format
and an absolute tolerance of 10719).
Picard iteration | #iters for electron species | #iters for ion species
_ 0 30 5
_ 10 1]
g 1 28 4
£ 2 20 3
g FOOORHIOCXT 3 16 2
= / 4 12 2
)x?‘xx T
X
X
X
ok I iteration count which translates to an overall faster time to
soed e solution.
0 100 200 300 400 500 600

No. matrices in the batch

Fig. 7: Total time taken by the SpMV kernels on A100

textual information about the problem to the algorithm in the
form of an initial guess. In Figure 8, we investigate the impact
of using an initial guess for the linear solves inside the non-
linear Picard iteration. A good initial guess can significantly
reduce the iteration count needed and hence in solution-based
non-linear solvers with an inner linear solver, this can be quite
beneficial to reduce the overall time to solution.

With batched iterative solvers, when solving independent
linear systems with possibly different convergence properties,
the effects of initial guess are pronounced only for those
systems that have a higher iteration count. In our case, the
electron system requires a moderate number of iterations,
around 35 with an initial guess of all zeros. Using the solution
from the previous Picard iteration, we can reduce the iteration
count for successive linear solves in the nonlinear solver. In
the XGC proxy-app, we have 5 Picard iterations and the
linear solver iteration counts for successive Picard iterations
are shown in Table III. We see the significant reduction in

165

In Figure 8, we see the time to solution for two different ini-
tial guesses. With the solution of the previous Picard iteration
as the initial guess for the linear solve of the subsequent Picard
iteration, we obtain a significant speedup due to a reduction
in the number of linear solver iterations for the same solution
quality. For the CSR format, we see speedups of ~ 1.15
to ~ 1.25 in terms of total time, while for ELL format we
see speedups between ~ 1.2 up to about ~ 1.6 compared to
using a zero initial guess for the A100 GPU with the batched
BiCGStab solver.

Finally, in Figure 9, we show the speedups obtained with the
batch iterative solvers on the GPU platforms over the dgbsv
solver on the Skylake CPU. The total time required for all
5 Picard iterations is used for this plot. As explained in the
previous paragraph, we use the solution of the previous Picard
iteration as the initial guess for the batched iterative linear
solver in the subsequent Picard iteration. The BatchEll
format is used for these runs. As expected, the speedup for the
ion systems is the largest, because they need few iterations. For
the combined batches with equal numbers of ion and electron
matrices, we get effective speedups between 4x and almost
9x depending on the GPU architecture without sacrificing the
accuracy required by the application.

Initial Guess

+++++t
-- Zzero I
~0.05 previous Picard iteration !
8 T++++++++++
3 !
g /
= 0.04 i /
o +++++++++++ /
3 ! I
a: 'l !
Le 0.03 +++++++++++)‘(XXXX’XX><X'XX
o H !
[] 1
0] I %
E JRRXKKKKKNK
= 0.02 T++++++++H"I’
o |
> e XXX KKKKKK
©° i
[0 3
+++++¥
0.01
100 200 300 400 500 600
batch size
Initial Guess
-4-_7Zero i
__0.018 3
@2 -+~ previous Picard iteration {
(2] 1
s
5 0.016 T++++++++
] o
i 0014 +++.’*-++++‘£xxxx>‘x><x
= +4 !
8 0,012 ! L
o I enxx ¥
[o) aptatl”
Pl ++++ +]
S 0.010 i i
L e
Q I, oo X XXX
I o
= 0.008 f++++++++++7
o i
2 e
2 0.006 Iy
n +++++J,l
X XXX XK
0.004
100 200 300 400 500 600
batch size

Fig. 8: Effect of using initial guess from the previous Picard
iteration on total time to solution (cumulative over all the
Picard iterations), Top: with BatchCsr format, Bottom: With
BatchEll format.

VI. CONCLUSION

We have measured the performance of the GINKGO batched
sparse iterative solvers for matrices representative of the
electron and ion species on V100, A100 and MI100 GPUs
and compared them against the Batched banded solvers on
the CPU. The results suggest that the batched sparse iterative
solvers in GINKGO efficiently utilize the GPU and being
performance portable, are well suited for integration into main
XGC. The results also underscore the importance of using an
efficient sparse matrix format and the benefits of using batched
iterative solvers over their batch direct counterparts.

The flexibility offered by GINKGO in terms of composing

166

B ion
mm electron
B combined

10

Speedup w.r.t. dgbsv on Skylake

V100

A100
Processor

Fig. 9: Speedup for 5 Picard iterations using batched
BiCGStab on GPUs over the banded solver on CPU

different batch solver components, while reducing the number
of kernel launches allowing for maximum data reuse and
increased occupancy, is important. Finally, using GINKGO
iterative batched sparse solvers in conjunction with Kokkos
would allow for seamless execution of XGC on exascale-
oriented heterogeneous architectures at the various leadership
supercomputing facilities. Therefore, future work includes
tight integration of GINKGO into the main XGC using the
flexible interfaces provided by the former, bringing it to
production.

REFERENCES

Ahmad Abdelfattah, Timothy Costa, Jack Dongarra, Mark Gates, Azzam
Haidar, Sven Hammarling, Nicholas J. Higham, Jakub Kurzak, Piotr
Luszczek, Stanimire Tomov, and Mawussi Zounon. A Set of Batched
Basic Linear Algebra Subprograms and LAPACK Routines. ACM
Transactions on Mathematical Software, 47(3):21:1-21:23, June 2021.

Ahmad Abdelfattah, Timothy Costa, Jack Dongarra, Mark Gates, Azzam
Haidar, Sven Hammarling, Nicholas J. Higham, Jakub Kurzak, Piotr
Luszczek, Stanimire Tomov, and Mawussi Zounon. A set of batched
basic linear algebra subprograms and LAPACK routines. ACM Trans.
Math. Softw., 47(3), June 2021.

Hartwig Anzt, Terry Cojean, Yen-Chen Chen, Goran Flegar, Fritz Gobel,
Thomas Griitzmacher, Pratik Nayak, Tobias Ribizel, and Yu-Hsiang
Tsai. Ginkgo: A high performance numerical linear algebra library.
Journal of Open Source Software, August 2020.

Hartwig Anzt, Jack Dongarra, Goran Flegar, and Enrique S. Quintana-
Orti. Batched Gauss-Jordan Elimination for Block-Jacobi Preconditioner
Generation on GPUs. In Proceedings of the 8th International Workshop
on Programming Models and Applications for Multicores and Many-
cores, PMAM’17, pages 1-10, New York, NY, USA, February 2017.
Association for Computing Machinery.

Hartwig Anzt, Jack Dongarra, Goran Flegar, and Enrique S. Quintana-
Orti. Variable-size batched LU for small matrices and its integration into
block-Jacobi preconditioning. In 2017 46th International Conference on
Parallel Processing (ICPP), pages 91-100, 2017.

Enda Carroll, Andrew Gloster, Miguel D. Bustamante, and Lennon o
Naraigh. A batched GPU methodology for numerical solutions of partial
differential equations. arXiv, 2107.05395, 2021.

Advanced Micro Devices. MI100 white paper. https://www.amd.com/
system/files/documents/amd-cdna- whitepaper.pdf.

(21

(3]

(4]

(6]

[7

—

[8] Tingxing Dong, Azzam Haidar, Piotr Luszczek, James Austin Harris,
Stanimire Tomov, and Jack Dongarra. LU Factorization of Small
Matrices: Accelerating Batched DGETRF on the GPU. In 2014 IEEE
Intl Conf on High Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th
Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS), pages
157-160, Paris, France, August 2014. IEEE.

Jack Dongarra, Iain Duff, Mark Gates, Azzam Haidar, Sven Ham-
marling, Nicholas J. Higham, Jonathon Hogg, Pedro Valero-Lara,
Samuel D. Relton, Stanimire Tomov, and Mawussi Zounon. A
Proposed API for Batched Basic Linear Algebra Subprograms.
http://eprints.ma.man.ac.uk/2464/, April 2016.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos:
Enabling manycore performance portability through polymorphic mem-
ory access patterns. Journal of Parallel and Distributed Computing,
74(12):3202 — 3216, 2014. Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

Nikolay M. Evstigneev, Oleg I. Ryabkov, and Eugene A. Tsatsorin.
On the Inversion of Multiple Matrices on GPU in Batched Mode.
Supercomputing Frontiers and Innovations: an International Journal,
5(2):23-42, June 2018.

Andrew Gloster, Lennon O Néraigh, and Khang Ee Pang. cupent-
batch—a batched pentadiagonal solver for NVIDIA GPUs. Computer
Physics Communications, 241:113-121, 2019.

Aditya Kashi, Pratik Nayak, Dhruva Kulkarni, Aaron Scheinberg, Paul
Lin, and Hartwig Anzt. Ginkgo source snapshot and data for batched
sparse iterative solvers on GPU for the collision operator for fusion
plasma simulations, February 2022.

NVIDIA. Ampere A100 white paper.
images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture- whitepaper.pdf.

NVIDIA. cuSOLVER - gpu accelerated library for decompositions and
linear system solutions on NVIDIA GPUs. https://docs.nvidia.com/cuda/
cusolver/index.html. Accessed: 2021-08-24.

NVIDIA. Volta V100 white paper. https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture- whitepaper.pdf.

Pedro Valero-Lara, I. Martinez-Pérez, Raiil Sirvent, X. Martorell, and
Antonio J. Pefia. cuThomasBatch and cuThomasVBatch, CUDA routines
to compute batch of tridiagonal systems on NVIDIA GPUs. Concurrency
and Computation: Practice and Experience, 30, 2018.

H. A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems.
SIAM Journal on Scientific and Statistical Computing, 13(2):631-644,
March 1992. Publisher: Society for Industrial and Applied Mathematics.

[9]

(10]

(11]

[12]

(13]

[14] https://

[15]

[16]

(17]

(18]

REPRODUCIBILITY APPENDIX

In order to ensure reproducibility of results, we provide
the code as a Zenodo archive and elaborate on the settings
and parameters used to produce these results. Since the XGC
application is not available publicly, we focus on the repro-
ducibility of the results in Figure 6.

Obtaining the source code and installing GINKGO

The source code and matrices are available via Zenodo [13]
(https://doi.org/10.5281/zenodo.6280255). To build GINKGO
and reproduce results in this paper, the following components
are necessary:

1) The CMake build platform (>3.13).

2) A C++-14 compiler

3) A CUDA installation (CUDA > 11.0 or NVHPC > 21.7)
4) A ROCm installation (ROCM > 4.2)

The Ginkgo library and the batched functionality use the
same canonical CMake setup as elaborated in the Ginkgo
documentation (https://ginkgo-project.github.io/ginkgo/doc/
develop/install_ginkgo.html).

167

Benchmarking

The different flags available are explained on the bench-
marking documentation page: https://ginkgo-project.github.io/
ginkgo/doc/develop/benchmarking_ginkgo.html. To reproduce
the results in this paper, the Zenodo archive contains the file
run_xgc_matrices.sh. The header and job launcher in
this script are specific to the Summit system, but apart from
those, it works for other systems.

The matrices need to be in the Matrix Market format.
The matrix class name (in this case, dgb_2) should be the
main folder, with the matrices and the right hand sides in
subfolders with the matrix index as the folder name (‘0’°,
‘1°...). In the script, set the folder to benchmark: export
BATCH_MATRIX_FOLDER=/path/to/dgb_2.

Our hardware and software

The NVIDIA V100 experiments were run on the Summit
supercomputer at Oak Ridge National Laboratory in the United
States. Each node of Summit consists of 6 NVIDIA V100
GPU’s connected to each other and the CPU sockets with
NVLINK bridges. GCC 9.1.0 was used as the host compiler
and CUDA 11.0.3 was used as the device compiler.

The NVIDIA A100 experiments were run on a system
operated by the National Energy Reserch Scientific Computing
Center (NERSC) for the United States government, using
NVIDIA’s NVHPC 21.7 toolchain and on the Horeka cluster
at Karlsruhe Institute of Technology, Germany using CUDA
version 11.4.

The AMD MI100 experiments were run on a local cluster
on one MI100 GPU. The system CPU is an AMD EPYC 7302.
The ROCm framework version 4.2.0 was used.

