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ABSTRACT

This paper reports on the design of a FORTRAN-
to-Java translator whose target language is the in-
struction set of the Java Virtual Machine. The goal
of the translator is to generate Java implementa-
tions of legacy FORTRAN numerical codes in a con-
sistent and reliable fashion. The benefits of directly
generating bytecode are twofold. First, compared
to generating Java source code, it provides a much
more straightforward and efficient mechanism for
translating FORTRAN GOTO statements. Second,
it provides a framework for pursuing various com-
piler optimizations, which could be beneficial not
only to our project, but to the Java community as
a whole.

1. INTRODUCTION

The Java programming language [1] has grown dras-
tically in popularity in recent years, in industry as
well as in academia. The properties of Java, such
as portability, memory management, and security
make it an attractive programming environment for
a wide range of applications. Despite some prop-
erties that would make Java seem less attractive
to programmers in the high-performance and sci-
entific computing community (such as the lack of a
complex primitive data type and the lack of opera-
tor overloading), interest in using Java for scientific
and engineering applications has also increased, as
evidenced by the number of mathematical libraries
[2, 3, 4, 5, 6] and scientific and engineering appli-
cations [7, 8] developed in Java over the past few
years.

The primary by-product of our earlier work

on the FORTRAN-to-Java translator has been one
such mathematical library — JLAPACK [9]. The
JLAPACK library provides Application Program-
ming Interfaces (APIs) to numerical libraries from
Java programs. The numerical libraries will be dis-
tributed as class files produced by a FORTRAN-to-
Java translator, f2j. The first version of {2j was
used to translate the BLAS [10, 11, 12] and LA-
PACK [13] numerical libraries from their FORTRAN
77 reference source code to Java source code and
subsequently distributed as a library of class files.
These libraries are established, reliable, and widely
used linear algebra packages, and are therefore a
reasonable first testbed for 2j. This report de-
scribes an extension to the £2j compiler that allows
directly generating class files from FORTRAN source
code.

2. MOTIVATION

First we describe the motivation behind writing a
FORTRAN-to-Java translator and then describe why
we have chosen to extend the code generator to
directly emit bytecode.

The original goal of f2j was to facilitate the
translation of legacy FORTRAN numerical libraries
to Java, with LAPACK and BLAS being the pri-
mary libraries of interest. Given the goal of pro-
ducing a Java implementation of LAPACK, there
are three options:

1. Wrap the native routines in Java interfaces
2. Rewrite the routines in Java from scratch

3. Develop a tool to automate the translation

We avoided the first method because we wanted
the Java version of LAPACK to be used by ap-
plets as well as applications, thus requiring a pure
Java implementation. The second option would
have required hand-translating, testing, and debug-
ging hundreds of routines. Given the large amount
of code in LAPACK, the second option could be
very time-consuming and error-prone. We chose



the third option because it allows us to generate
pure Java code in a consistent and reliable way from
the original Fortran source. In addition, after pur-
suing the third option, we have a tool which could
be applied successfully to other numerical libraries
and eventually to a wide range of Fortran code.

There are two primary factors motivating the
development of a bytecode generator for {2j — han-
dling GOTO statements and exploring code opti-
mization techniques.

The handling of FORTRAN GOTO statements
has been a difficult problem due to Java’s lack of
a goto statement. As described in [9], we can use
Java’s labeled break and continue statements to
translate certain types of FORTRAN GOTOs, but
there are still some branches that do not correspond
to a break or continue statement. For these GO-
TOs, the technique we have been using is to gen-
erate “placeholders” in the Java source code. The
placeholders are method calls which specify the tar-
get of the GOTO statement. For example, the fol-
lowing FORTRAN statement:

GO TO 100
would be translated to the following Java method
call:

Dummy . go_to ("Progunit",100) ;
whereas the corresponding label becomes:

Dummy . label ("Progunit",100) ;

The first argument is the name of the current pro-
gram unit and the second argument is the branch
target or label number. Once the resulting Java
source code is compiled with javac, we use a GOTO
translation tool to parse the bytecode and identify
the placeholders, which are then emitted as JVM
branch instructions. This is discussed in greater
detail in [9].

The post-processing has worked acceptably ex-
cept that the multi-stage process is cumbersome
and something that many users find confusing. In
fact, it is so easy to forget to run the GOTO transla-
tion tool that we implemented the Dummy methods
such that they warn the user when GOTO trans-
lation has not been performed. The first argument
is used to inform the user which program unit has
not been transformed. The GOTO translation pro-
cess has remained separate from f2j for two rea-
sons. First, we wanted to allow the users to modify
the resulting Java source before GOTO translation.
Second, since the GOTO translation requires Java
compilation before the patching, we kept the pro-
cess separate from 12 to allow for users to choose
their own Java compiler and flags.

Since the JVM instruction set includes an un-
conditional branch instruction, generating the byte-
code directly does not require any tricky manipula-
tion or post-processing. This greatly simplifies and

speeds the translation process.

Another benefit to generating bytecode is that
it allows us to explore various optimization tech-
niques since we can directly control how the stack
is used, which instructions are generated, and in
which order. We plan to employ traditional com-
piler optimizations such as loop unrolling and code
motion, for which well-understood optimization tech-
niques exist [14], as well as exploring alternate tech-
niques which may be specific to Java. The appli-
cation of such techniques to Java source code is
complicated by Java’s precise exception and multi-
threading semantics [15].

While there are several Java assembler formats
available (one popular example being Jasmin [16])
which would make debugging a bit easier, we chose
to generate the bytecode directly in order to min-
imize the dependence on external packages. The
benefit to the user is that there is one fewer pack-
age to install and the benefit to us (the developers)
is that we do not depend on ongoing support for
any external packages.

The development of the bytecode generator has
not rendered obsolete the prior Java source code
generator. In some cases, it may be desirable to
modify the translated source code, which is much
easier when the target language is Java source code.
Therefore, we have designed the bytecode generator
to coexist with the previous code generator without
interference, providing the user with the choice of
target language.

3. IMPLEMENTATION

The f2j compiler operates in four stages, as de-
scribed below and illustrated in Figure 1.

3.1 Lexical Analysis and Parsing

In this stage the lexer separates the FORTRAN source
code into tokens and the parser builds a complete
AST (Abstract Syntax Tree) and symbol tables for
each program unit. Subsequent compilation stages
obtain all information about the program structure
from the AST built during parsing.

3.2 Optimizing the Use of Scalar Wrap-

pers
In FORTRAN values are passed to functions and
subroutines by reference. This implies that if a
FORTRAN subroutine modifies one of its parame-
ters, then that modification also takes effect in the
calling routine. However, Java uses pass-by-value,
which implies that any modifications would not take
effect in the caller. In order to simulate pass-by-
reference in Java, we must wrap the scalar in an
object. Then instead of passing the integer value,
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Figure 1: Stages of Translation

we would pass the object wrapper whose scalar field
may be modified in the subroutine.

During the scalar “optimization” phase, £2j de-
termines which parameters of each subroutine ab-
solutely need to be wrapped. The rest are passed as
Java primitive data types (int, double, etc) in or-
der to improve access times and save memory. The
determination is made as follows.

A variable must be wrapped if:

1. The variable is an argument to this function
and it is on the left side of an assignment
statement in this program unit

2. The variable is an argument to this function
and it is an argument to a READ statement

3. The variable is passed to a function or sub-
routine that modifies it

The last rule implies that every function or
subroutine that the current program unit depends
on must be checked before this unit can be com-
pletely verified. f2j resolves the dependencies before
continuing to check the current unit. Of course, the
assumption is that there are no cycles in the depen-
dency graph.

3.3 Type Assignment

This stage is not “typechecking” in the semantic
analysis sense. In this stage, f2j performs a traver-
sal of the AST and assigns type information to each

node, propagating information up the tree. For ex-
ample, f2j looks at both sides of an addition op-
eration and assigns the widest type to the addi-
tion node and so on up the tree. This informa-
tion helps the code generator emit the appropriate
type-specific opcodes and type casts when neces-
sary. Such type casts are not as common when
generating Java source, but explicit casts are nec-
essary when making a narrowing conversion.

3.4 Code Generation

Code generation is by far the largest and most com-
plicated stage in the translator. In this stage, 2
traverses the AST, generating code as it traverses
through the tree. The code generator depends on
the information determined in all the prior steps to
generate correct code. Currently, Java source code
and JVM bytecode are generated during the same
pass (over the AST) because using separate passes
would have resulted in a lot of duplicated code and
made maintenance more difficult.

4. GENERATING BYTECODE

This section elaborates on the design and imple-
mentation of the final stage of the translator, the
code generator.

4.1 Design

In this section, we briefly mention some of the de-
sign considerations made during the development
of 12j.

411 General

Each FORTRAN program unit is generated as a sep-
arate Java class containing a single static method.



Fortran Source

Bytecode (disassembled with D-Java [17])

PROGRAM CTEST
INTEGER A,B,C
COMMON /CBLK/A,B,C {

public final class ctest_cblk extends Object
>> ACC_SUPER bit set <<

public static org.netlib.util.intW a;
public static org.netlib.util.intW b;
public static org.netlib.util.intW c;

Table 1: Common Block Example

Fortran Source

Bytecode (disassembled with D-Java [17])

PROGRAM CTEST2
INTEGER A,B,C
COMMON /CBLK/A,B,C {

SUBROUTINE SUB()
INTEGER X,Y,Z
COMMON /CBLK/X,Y,Z

public final class ctest2_cblk extends Object
>> ACC_SUPER bit set <<

public static org.netlib.util.intW x_a;
public static org.netlib.util.intW y_b;
public static org.netlib.util.intW z_c;

Table 2: Common Block Example with Merged Variable Names

For example, the FORTRAN subroutine DGEMM would
be translated to a Java class named Dgemm contain-
ing only a single method named dgemm.

All arrays are laid out in memory in column-
major fashion, with multi-dimensional FORTRAN ar-
rays being translated as linearized one-dimensional
Java arrays.

4.1.2 GOTO Satements

Java source code does not provide a GOTO state-
ment. Thus, we must perform some post-processing
on the class files that were generated from Java
source (using javac or equivalent Java compiler)
in order to correctly generate the goto statements.
However, FORTRAN GOTO statements are easily
translated to JVM bytecode since there exists a
goto opcode.

4.1.3 Variables

All variables are emitted as static class variables
and initialized in a special class initialization method
named <clinit>, which is only required when di-
rectly generating bytecode. When writing Java source
code, javac generates <clinit>. Since the vari-
ables are declared as static class variables, any SAVE
statements in the FORTRAN source may be ignored
since essentially all variables are already saved. This
was originally done for simplicity so that the code
generator could emit all variables at the same time
and in the same manner. However, such conve-
nience usually comes at a price and in this case,
the price is performance. We find that the JVM in-
struction to load a static class variable takes longer

than the instruction to load a local variable, thus
decreasing the overall performance of the generated
code.

As mentioned in Section 3, all variables are
emitted as primitives unless {2j determines that they
must be wrapped in objects.

4.1.4 DATA Satements

The initialization performed by DATA statements
is emitted as part of the special method named
<clinit>. This works well under the current as-
sumption that all variables are all emitted as static
class variables.

4.1.5 Intrinsic Functions

Some FORTRAN intrinsic functions may be trans-
lated directly to a corresponding method in the
Java core API. For example, many mathematical
functions such as ABS, SQRT, and LOG have direct
analogues in the java.lang.Math package. How-
ever, many intrinsics do not directly correspond to
any existing Java method and in these cases, we
have implemented the intrinsics in Java. The in-
trinsics we implemented in Java include DIM, L0OG10,
and hyperbolic trigonometric functions. It is worth
noting that the code used to implement these un-
supported intrinsics could have been inlined in the
bytecode. However, there are several reasons for
not inlining. First, as there is an upper bound on
the code size of a Java method, it is prudent to
avoid code expansion where possible. Also, mod-
ern JIT compilers are likely to inline these small
methods where appropriate. Finally, implementing



these unsupported intrinsics in Java simplifies the
implementation and maintenance of the code gen-
erator.

4.1.6 Common Blocks

Each common block in the FORTRAN source is emit-
ted in a separate class file, containing all the vari-
ables of the original common block as static vari-
ables. If multiple declarations of the same com-
mon block exist in the FORTRAN source, {2j merges
the variable names from each declaration into one
name.

Tables 1 and 2 show examples of the code gen-
erated for common blocks. All variables in a com-
mon block are wrapped in objects because it may be
difficult to determine whether one of the variables is
used in a pass-by-reference context, especially when
program units are translated separately.

417 EQUIVALENCE Satements

Generally, EQUIVALENCE statements are difficult
to translate since Java does not allow overlapping
memory regions. However, f2j can handle a lim-
ited form of EQUIVALENCE as long as the vari-
ables being equivalenced do not differ in type and
are not offset from each other. This restriction im-
plies that any two arrays being equivalenced must
specify indices of 1. However, it is allowable to
equivalence arrays of different dimensions (e.g. a
one-dimensional integer array to a two-dimensional
integer array), as all arrays are linearized to one
dimension and the access is basically the same re-
gardless of the number of dimensions.

To handle the limited EQUIVALENCE, we sim-
ply merge the equivalenced variable names into a
single variable, as shown in Table 3. Then this sin-
gle variable is loaded in place of any of the variables
that were previously equivalenced.

41.8 /O Satements

While I/O is not the most critical aspect of translat-
ing numerical libraries such as LAPACK, we have
found it useful to partially implement FORTRAN
I/O in order to translate the test routines, which
read in the parameters and write out the results.
Unformatted WRITE statements are easily imple-
mented with Java’s println() method, but for-
matted WRITE statements require first analyzing
the corresponding FORMAT statement and creat-
ing a StringBuffer to hold the output before call-
ing println(). READ is implemented using an
external library, EasyIn [18]. File I/O is not yet
implemented.

4.1.9 Passing Functions as Arguments
Passing a function name as an argument to another
function, as done in FORTRAN, is not possible in

Java. A Java programmer may pass a class as an ar-
gument, but not an individual method. The closest
Java analogue is passing an interface which imple-
ments a method with a pre-determined name. That
technique is not really suitable for use with £2j be-
cause every generated class file would be forced to
implement the interface whether it was actually in-
tended to be passed to another function or not, thus
adding extra overhead even if the implementation
is simply a call to the translated FORTRAN routine.
Another option is using inner classes to implement
the callback, but this also mandates generating ex-
tra code.

Rather than using interfaces, f2j uses Java’'s
“reflection” mechanism to determine the appropri-
ate method to invoke, based on the assumption that
2j always places the generated FORTRAN routine in
the first method of the class. The caller only needs
to pass a new instance of the class corresponding
to the translated FORTRAN routine.

4.1.10 Other Limitations

Aside from the limitations already mentioned (I/0O,
EQUIVALENCE, etc.), f2j does not currently sup-
port multiple entry points (ENTRY statement), al-
ternate returns, statement label assignment, or com-
plex arithmetic.

Though it is not part of the FORTRAN 77 spec-
ification, some compilers support the RECURSIVE
keyword to signify that recursion is allowed. The
Java platform places no artificial restrictions on re-
cursion, but support for recursive functions is still
not completely implemented in £2j. The obstacle to
fully implementing recursion is that allowing recur-
sion interferes with the scalar wrapper optimization
phase (see Section 3.2) when the recursion is indi-
rect and one of the arguments requires an object
wrapper.

Some of these restrictions are more serious than
others. For example, code that relies heavily on
EQUIVALENCE will not likely translate well be-
cause such a language construct does not map well
to the Java language. The LAPACK source code
only uses EQUIVALANCE in a few cases. In those
cases, the EQUIVALENCE statements are in a form
that f2j can handle correctly, as described in Sec-
tion 4.1.7.

The current release of JLAPACK consists of
all 346 double-precision routines translated from
LAPACK and all 33 double-precision routines from
BLAS, totaling 137,406 lines of Java source. Addi-
tionally, all of the double-precision BLAS and LA-
PACK testers have been translated, totaling over
100,000 lines of Java source. Complex arithmetic is
not supported by f2j yet, but given the existence of
several Java libraries [19, 20, 21], we expect that the



Fortran Source

Bytecode (disassembled with D-Java [17])

PROGRAM ETEST
INTEGER A(100), B(10,10)
EQUIVALENCE (A,B) {

public final class Etest extends Object
>> ACC_SUPER bit set <<

public static int[] a_b;

Table 3: EQUIVALENCE Example

f2j code generator could be straighforwardly mod-
ified to support complex arithmetic using one of
these implementations.

4.2 Implementation

The code generator is implemented in two passes.
The first pass generates the appropriate instruc-
tions and the second pass calculates the maximum
stack depth and fills in any branch targets that were
not known during the first pass. There are back-
patching techniques that would allow filling in the
branch targets in one pass [14], but since we are
using two passes in any case, we can more easily
perform this task during the second pass.

4.2.1 Instruction Generation

First, the code generator traverses the abstract syn-
tax tree, generating Java source code as well as the
JVM opcodes. However, at this point the opcodes
have empty operand fields for branch target ad-
dresses because for forward branches, we do not
yet know the address of the target instruction as
it has not yet been generated. In such cases, we
simply save a pointer to the current node and up-
date its branch target pointer after generating the
nodes in between the current node and the target.
This is useful when the GOTO is “implicit” in the
sense that it never appeared as a GOTO in the
original source (i.e. it is used to implement some
FORTRAN control structure such as a DO loop).
GOTO statements which appear explicitly in the
FORTRAN source require slightly different handling
since the branch target is an arbitrary label whose
corresponding node we do not have access to at this
point. Also there is no inherent structure as with a
DO loop, where the goto always branches to a spe-
cific instruction. Thus, during this phase, we create
a table which maps the labels in the original source
to the corresponding instruction addresses. Then
in the next phase, we can easily fill in the branch
target address for any GOTO statement by looking
up its branch label.

4.2.2 Calculating Sack Depth and Branch

Targets
At this point, the AST has been fully traversed, we
have generated the Java source code, and we have
built a control flow graph representing the byte-

code. Each node may have pointers to other nodes,
which represent the branch targets. Each instruc-
tion may or may not have a single branch target
depending on the instruction type!. For example,
an iload instruction has no branch target whereas
icmpeq, being a conditional branch, does have a
branch target. Now as we traverse this graph, we
can fill in the empty branch target offsets by follow-
ing the pointer to the target node and examining
its address.

Also during this phase, we maintain informa-
tion about the current stack depth at each node
because the class file format requires specifying the
maximum stack depth that will be encountered dur-
ing execution of the method. The stack depth at
any given node is a function of the stack depth at
the prior node and the characteristics of the current
instruction (e.g. iadd would pop two integers off
the stack and push one integer on, for a net differ-
ence of one). This also provides a nice opportunity
for sanity checking — for example, if the current
instruction branches back to another instruction
for which the stack depth has already been cal-
culated, then we can check whether the expected
stack depth matches the current stack depth. In
other words, a given instruction could be the target
of multiple other instructions and the stack depth
at all of those instructions must be consistent (oth-
erwise, this indicates an error in the code genera-
tor).

Finally, at this point we have built a complete
data structure representing the class file — this in-
cludes constant pool, fields, and methods — which
we emit in the format dictated by the Java Virtual
Machine Specification [22].

4.3 Differences in Code Generation
Since we did not want to eliminate the existing code
generator (which emits Java source), we designed
the new code generator to emit both Java source
and JVM bytecode during the same pass. For the
most part, the bytecode can be generated simulta-
neously with the Java source code, but there are
some exceptions:

!We are conveniently ignoring tableswitch which
has many branch targets because f2j never actually
generates this opcode.



Calling FUNC1

Calling FUNC2

getstatic #15 <Field Hello.x:int[]>
iconst_5
iconst_1
isub
iaload
invokestatic #22
<Method Funcl.funcl(int):void>

getstatic #15 <Field Hello.x:int[]>
iconst_5

iconst_1

isub

invokestatic #28

<Method Func2.func2(int[],int):void>

Table 4: Differences in Argument Passing.

e Obviously GOTO statements are handled dif-
ferently in bytecode since we can easily emit a
goto JVM instruction, but we must generate
“dummy” method calls in Java source.

e DO loops are emitted as for loops in Java
source, with the initial, terminal, and incre-
mentation parameters straightforwardly trans-
lated to Java-style loop control expressions.
However, when translating a DO loop directly
to bytecode, we follow the sequence outlined
in the FORTRAN 77 specification [23] and cal-
culate the iteration count? before entering the
loop. Then at each iteration, the iteration
count is decremented until it reaches 0, at
which point the loop is terminated.

e Variable declarations are handled a bit dif-
ferently in bytecode. Each variable must be
stored in the fields table of the current class,
but explicit initialization code is only gener-
ated for array and reference data types. When
generating bytecode, we must create a special
method named <clinit> into which we place
the initialization code. However, with Java
source, this is handled by javac.

e Type casts are much more important when
generating bytecode than Java source since
each instruction is type-specific. Thus, in the
many instances that we could “get away” with
generating an expression in Java without any
explicit casts, we must generate type conver-
sion instructions in bytecode.

When the code generator needs to toggle be-
tween modes — such as to suspend Java source code
generation and begin generating code in bytecode
only — we simply set the appropriate global file
pointer to /dev/null and call the routine as usual.
There is no need for any modification to the code
generation routines.

>The iteration count is defined as maz(int((m2 —
mi+ms)/ms),0), where m; is the initial value, mo
is the terminal value, and mg is the incrementation
value [23].

4.4 Resolving Calls to External Func-
tions

This section describes a technique for resolving calls
to functions or subroutines which do not appear in
the original source file. By “resolving”, we mean de-
termining the correct calling sequence for the func-
tion call, which depends on its method signature.
For example, consider the following FORTRAN pro-
gram segment:

INTEGER X(10)

CALL FUNC1( X(5) )
CALL FUNC2( X(5) )
[...]
SUBROUTINE FUNC1(A)
INTEGER A
[...]
SUBROUTINE FUNC2(A)
INTEGER A (%)

The first subroutine, FUNC1, expects a scalar
argument, while FUNC2 expects an array argument.
These two calls would be generated identically in
a standard FORTRAN compiler, regardless of how
FUNC1 and FUNC2 were defined — the address of the
fifth element of X would be passed to the subroutine
in both cases. However, things are not so simple in
Java due to the lack of pointers. To simulate pass-
ing array subsections, as necessary for the second
call, we actually pass two arguments — the array
reference and an additional integer offset parame-
ter, as shown in the right column of Table 4.

However the first subroutine expects a scalar,
so we should pass only the value® of the fifth el-
ement, without any offset parameter, as shown in
the left column of Table 4.

Notice that the primary difference between the
two calling sequences is that when calling FUNC1,
the array is first dereferenced using the iaload in-
struction. Also note that the purpose of the arith-

3In this case, assume that FUNC1 does not modify
the argument, otherwise things get even more com-
plex. See [9] for a description of handling that case.



Compilation Method Command Line

Raw Performance

Performance Relative

(Mflop/s) to Optimized Fortran
Optimized Fortran £77 -03 34.7 1.00
Unoptimized Fortran £77 141 0.41
Bytecode f2java 10.9 0.31
Bytecode (-server) f2java 25.9 0.75
Java Source f2java ; javac 10.3 0.30
Java Source (-server) f2java ; javac 27.9 0.80

Table 5: Performance on the double-precision Linpack Benchmark (n=500)

metic expression is to decrement the index by 1 to
compensate for the fact that Java has 0-based in-
dexing whereas FORTRAN has 1-based indexing.

The only way to determine the correct calling
sequence for any given call is to examine the param-
eters of the corresponding subroutine or function
declaration. This is only possible if the declaration
had been parsed at the same time as the current
program unit, meaning that for code generation to
work properly all the source files had to be joined
into a big monolithic input file.

This was a serious limitation, especially for
large libraries, because a modification to any part of
the code requires re-compiling all the source. There
are at least a couple of ways to solve this problem.
One way would be to obtain the parameter infor-
mation directly from class files that have already
been generated. While this would work well, since
2j is written in C and does not have access to nice
Java features like reflection, it would require a lot of
extra code to parse the class files. Instead, we use
a more lightweight procedure in f2j. At compile-
time, 2] creates a descriptor file which is a text file
containing a list of every method generated. Each
line of the descriptor file contains the following in-
formation:

e Class name — the fully qualified class name
which contains the given method.

e Method name — the name of the method itself.

e Method descriptor — this method’s descriptor,
which is a string representing the types of all
the arguments as well as the return type.

To resolve a subroutine or function call, we search
all the descriptor files for the matching method
name and examine the method descriptor. Based
on the method descriptor, we can then correctly
generate the calling sequence. The code generator
locates the descriptor files based on colon-separated
paths specified on the command line or in the en-
vironment variable F2J_SEARCH_PATH.

Test Category Number of Test Cases

BLAS Level 1 Unreported
BLAS Level 2 30,409
BLAS Level 3 27,864
LAPACK Linear Solver 316,206
LAPACK Eigenvalue 719,291

Table 6: Number of Test Cases

5. EXPERIMENTAL RESULTS

When evaluating the results of our code generator,
the two aspects we are most concerned with are cor-
rectness and efficiency of the generated code. Cor-
rectness means that the generated code produces
the same numerical results as the native-compiled
FORTRAN code, within a certain degree of tolerance
inherent in performing floating-point calculations
on different systems. We also measure efficiency in
terms of the original FORTRAN code, using the per-
formance of optimized FORTRAN as the standard by
which we evaluate the efficiency of our code. Opti-
mized FORTRAN is almost certainly going to repre-
sent an upper-bound on the performance potential
of the code that f2j generates.

5.1 Correctness

To date, the BLAS and LAPACK libraries have
been the main testbed for £2j. Thus, when evalu-
ating correctness we are primarily concerned with
the results generated by the Java implementation of
the BLAS and LAPACK libraries. Fortunately the
original FORTRAN distributions of these libraries in-
clude comprehensive testing routines to verify the
numerical results of the computations. To deter-
mine the correctness of the code generated by {2,
we translated all of the double-precision BLAS and
LAPACK test routines to Java and ran them against
the Java implementations of the BLAS and LA-
PACK libraries. The total number of test cases ex-
ecuted is quite large, as shown in Table 6. All the
numerical tests passed within the default thresholds
given in the original LAPACK test input files.

5.2 Efficiency
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To measure the performance of the code generated
by £2j, we translated the FORTRAN 77 source code
for the Linpack benchmark [24] in several different
ways, as shown in Table 5. The first two entries
represent native-compiled FORTRAN code, both op-
timized and unoptimized. The third entry repre-
sents the performance of the JVM bytecode gener-
ated by f2j. The fourth entry is the same as the
third except that the -server flag was specified
when running the benchmark. The last two en-
tries represent the Java source code generated by £2j
(which includes subsequent compilation with javac
and GOTO translation).

The test machine is a Sun Ultra-5 running So-
laris 2.7 with Sun’s J2SE 1.3.0 (with HotSpot en-
abled). We used Sun’s f77 5.0 compiler to obtain
the results for native-compiled FORTRAN code.

As Table 5 shows, the bytecode generated by
f2j achieves roughly one-third the performance of
optimized FORTRAN code in “client” mode and over
three-fourths the performance of optimized FOR-
TRAN code in “server” mode. Since f2j generates
the bytecode and Java source simultaneously, it
is convenient to compare the performance of the
directly-generated bytecode to the bytecode result-
ing from generating Java source and subsequently
compiling using javac. Depending on the JVM
used (and in the case of Hotspot, which JVM flag
is specified), in some cases the Java source is faster
and in other cases the directly-generated bytecode
is faster.

As another informal benchmark, we compared
the time required to run several of the LAPACK
test routines. As Figure 2 shows, the results are
similar to the Linpack benchmark results. The code
generated by 2] is close to the performance of unop-
timized FORTRAN , but still lags behind optimized
FORTRAN speeds.

5.3 The Object-Oriented Approach

At the outset of the f2j project, Java Virtual Ma-
chine technology had not matured to the point that
it was feasible from a performance standpoint to
make heavy use of object-oriented techniques in lin-
ear algebra code. However, with recent develop-
ments in Virtual Machine and JIT compilers, much
of the overhead associated with such techniques
can be eliminated. As an example, we compare
the performance of the code automatically gener-
ated by f2j with a representative of the object-
oriented approach — HARPOON/JLAPACK [4].
Figure 3 shows the performance of double-precision
matrix multiply, in which the object-oriented ap-
proach can exceed the performance of procedural-
style code. The performance difference is due to
the cumbersome array indexing expressions in our
automatically-generated code.

The clear conclusion is that we need not fear

the performance consequences of using object-oriented

techniques. To a certain extent, it would be feasi-
ble to rewrite our code generator in terms of object-

oriented techniques. For example, it would be straight-

forward to modify our code generator such that in-
stead of using standard Java arrays, it generates the
code in terms of a multidimensional array package,
such as those proposed in [25]. Other techniques,
such as recognizing vector operations and generat-
ing the appropriate method call would require more
significant modifications.

6. CONCLUSION

We have demonstrated that it is feasible to auto-
matically convert very large FORTRAN libraries to
JVM bytecode with reasonable performance. Cer-
tainly at this point the performance of the trans-
lated numerical code does not match hand-tuned
Java algorithms, but that is not the problem f2j
is designed to address. The 2j project intends to
bootstrap the use of Java for numerical and sci-
entific computing by providing the widest possible
range of useful and reliable numerical routines in a
pure Java format. However, having said that, we
think there is still a lot of opportunity for improv-
ing the performance of the generated code. Cur-
rently the bytecode is generated in a very straight-
forward manner, without any optimization. The
next stage in the development of the bytecode gen-
erator will be the implementation of a code opti-
mization stage to increase the performance of the
generated code. In particular, we would like to in-
vestigate the impact of various compiler optimiza-
tions on the performance of the JLAPACK library
routines. These techniques could be beneficial not
only to our project, but to the Java community as
a whole.

We also plan to remedy some of f2j’s limita-
tions — complex arithmetic support, better I/O
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Figure 3: Comparison of f2j-generated DGEMM with Object-oriented Version

handling, and some syntactic restrictions inherent
in our parser. The eventual goal is to have a tool
with a usefulness more general than just translating
numerical libraries.
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