
Chapter 4

BLAS for GPUs

Rajib Nath
Department of Electrical Engineering and Computer Science, University of
Tennessee

Stanimire Tomov
Department of Electrical Engineering and Computer Science, University of
Tennessee

Jack Dongarra
Department of Electrical Engineering and Computer Science, University of
Tennessee
Computer Science and Mathematics Division, Oak Ridge National Laboratory
School of Mathematics & School of Computer Science, Manchester University

4.1 Introduction . 57
4.2 BLAS Kernels Development . 58

4.2.1 Level 1 BLAS . 60
4.2.2 Level 2 BLAS . 61

4.2.2.1 xGEMV . 61
4.2.2.2 xSYMV . 63

4.2.3 Level 3 BLAS . 64
4.2.3.1 xGEMM . 65
4.2.3.2 xSYRK . 66
4.2.3.3 xTRSM . 67

4.3 Generic Kernel Optimizations . 68
4.3.1 Pointer Redirecting . 68
4.3.2 Padding . 72
4.3.3 Auto-Tuning . 72

4.4 Summary . 77
Bibliography . 79

4.1 Introduction

Recent activities of major chip manufacturers, such as Intel, AMD, IBM
and NVIDIA, make it more evident than ever that future designs of micropro-
cessors and large HPC systems will be hybrid/heterogeneous in nature, relying
on the integration (in varying proportions) of two major types of components:

1. Multi-/many-cores CPU technology, where the number of cores will con-

57

58 Scientific Computing with Multicore and Accelerators

tinue to escalate while avoiding the power wall, instruction level paral-
lelism wall, and the memory wall [1]; and

2. Special purpose hardware and accelerators, especially GPUs, which are
in commodity production, have outpaced standard CPUs in perfor-
mance, and have become as easy—if not easier—to program than mul-
ticore CPUs.

The relative balance between these component types in future designs is not
clear, and will likely vary over time, but there seems to be no doubt that future
generations of computer systems, ranging from laptops to supercomputers, will
consist of a composition of heterogeneous components.

These hardware trends have inevitably brought up the need for updates on
existing legacy software packages, such as the sequential LAPACK [2], from
the area of dense linear algebra (DLA). To take advantage of the new com-
putational environment, successors of LAPACK must incorporate algorithms
of three main characteristics: high parallelism, reduced communication, and
heterogeneity-awareness. In all cases though, the development can be stream-
lined if the new algorithms are designed at a high level (see Chapter 3), us-
ing just a few, highly optimized low-level kernels. Chapter 3 demonstrated
a hybridization approach that indeed streamlined the development of high-
performance DLA for multicores with GPU accelerators. The new algorithms,
covering core DLA routines, are now part of the MAGMA library [3], a succes-
sor to LAPACK for the new heterogeneous/hybrid architectures. Similarly to
LAPACK, MAGMA relies on the efficient implementation of a set of low-level
linear algebra kernels. In the context of GPU-based hybrid computing, this is
a subset of BLAS [4] for GPUs.

The goal of this chapter is to provide guidance on how to develop high
performance BLAS for GPUs—a key prerequisite to enabling GPU-based
hybrid approaches in the area of DLA. Section 4.2 describes some of the basic
principles on how to write high-performance BLAS kernels for GPUs. Sec-
tion 4.3 gives GPU-specific, generic kernel optimization techniques—pointer
redirecting, padding, and auto-tuning—and their application in developing
high-performance BLAS for GPUs. Finally, Section 4.4 gives a summary.

4.2 BLAS Kernels Development

Implementations of the BLAS interface are a major building block of DLA
libraries, and therefore must be highly optimized. This is true for GPU com-
puting as well, especially after the introduction of shared memory in modern
GPUs. This is important because it enabled fast Level 3 BLAS implementa-
tions [5–7], which in turn made possible the development of DLA for GPUs
to be based on BLAS for GPUs (see Chapter 3 and references [3, 6]).

BLAS for GPUs 59

Despite the current success in developing highly optimized BLAS for
GPUs [5–7], the area is still new and presents numerous opportunities for
improvements. Addressed are several very important kernels, including the
matrix-matrix multiplication, crucial for the performance throughout DLA,
and matrix-vector multiplication, crucial for the performance of linear solvers
and two-sided matrix factorizations (and hence eigen-solvers). The new im-
plementations are included in the MAGMA version 0.2 BLAS Library [3].

This section describes some of the basic principles on how to write high-
performance kernels for GPUs. Along with the specifics on developing each of
the BLAS considered, the stress is on two important issues for achieving high
performance. Namely, these are:

Blocking Blocking is a DLA optimization technique where a computation
is organized to operate on blocks/submatrices of the original matrix.
The idea is that blocks are of small enough size to fit into a particular
level of the CPU’s memory hierarchy so that once loaded to reuse the
blocks’ data to perform the arithmetic operations that they are involved
in. This idea can be applied for GPUs, using GPUs’ shared memory.
As demonstrated below, the application of blocking is crucial for the
performance of numerous GPU kernels.

Coalesced Memory Access GPU global memory accesses are costly and
not cached, making it crucial for the performance to have the right ac-
cess pattern to get maximum memory bandwidth. There are two access
requirements [8]. The first is to organize global memory accesses in terms
of parallel consecutive memory accesses—16 consecutive elements at a
time by the threads of a half-warp (16 threads)—so that memory ac-
cesses (to 16 elements at a time) are coalesced into a single memory
access. This is demonstrated in the kernels’ design throughout the sec-
tion. Second, the data should be properly aligned. In particular, the data
to be accessed by half-warp should be aligned at 16 ∗ sizeof(element),
e.g., 64 for single precision elements.

Clearly, fulfilling the above requirements will involve partitioning the compu-
tation into blocks of fixed sizes (e.g., multiple of 16) and designing memory
accesses that are coalescent (properly aligned and multiple of 16 consecutive
elements). This is demonstrated in the kernels’ design throughout the section.
The problems of selecting best performing partitioning sizes/parameters for
the various algorithms as well as the cases where (1) the input data are not
aligned to fulfill coalescent memory accesses and (2) the problem sizes are
not divisible by the partitioning sizes required for achieving high performance
need special treatment and are considered in Section 4.3. The main ideas in
this section are demonstrated on general and symmetric matrices, in both the
transpose and non-transpose cases.

The BLAS considered are not exhaustive; only subroutines that are critical
for the performance of MAGMA are discussed. Moreover, these would often

60 Scientific Computing with Multicore and Accelerators

(a) xAXPY (b) xGEMV (non-transpose)

FIGURE 4.1: Algorithmic view of Level 1 and Level 2 BLAS.

be DLA-specific cases that can be accelerated compared to CUBLAS [5], an
implementation of the BLAS standard provided by NVIDIA.

Further down a thread block will be denoted by TB, its size by NTB (or
NTBX ×NTBY in 2D), the number of threads in a TB by NT (or NTX ×NTY

in 2D), and the size associated with blocking (as described above) by nb.

4.2.1 Level 1 BLAS

Implementing Level 1 BLAS, especially reduce-type operations like dot-
product, isamax, etc., is of general interest for parallel computing, but not
in the area of DLA. The reason is that Level 1 BLAS are of very low com-
putational intensity (flops vs data required) and are avoided at first place
(at algorithm design level) in DLA. Even when they cannot be avoided algo-
rithmically, e.g., the use of isamax in LU for pivoting, their computation on
the GPU is avoided by scheduling their execution on the CPU (see the hy-
brid approach described in Chapter 3). One operation that fits very well with
the GPU architecture, and therefore can be efficiently executed on GPUs, is
xAXPY:

y := αx + y,

where x and y are vectors of size N , and α is a scalar. An example of its use
is the mixed-precision iterative refinement solvers in MAGMA [9].

The implementation is straightforward—one dimensional TB of size NTB

computes NTB consecutive elements of the resulting vector y (a thread per
element; also illustrated in Figure 4.1(a)). Important for achieving high per-
formance in this case, as discussed at the beggining of this section, is coalesced
memory accesses, tuning NTB and properly handling the case when N is not
divisible by NTB (i.e., N % NTB �= 0). These are recurring issues for obtaining
high-performance BLAS and will be further discussed in the context of other
BLAS kernels and GPU optimization techniques like auto-tuning (in Section
4.3.3) and pointer redirecting (in Section 4.3.1).

BLAS for GPUs 61

Note that the algorithm described satisfies the first requirement for co-
alescent memory access—to organize global GPU memory accesses in terms
of parallel consecutive memory accesses. The pointer redirecting technique
in Section 4.3.1 deals with the second requirement for coalescent memory
access, namely cases where the starting address of x is not a multiple of
16 ∗ sizeof(element) and/or N % NTB �= 0. The same applies for the other
BLAS kernels in the section and will not be explicitly mentioned again.

4.2.2 Level 2 BLAS

Level 2 BLAS routines, similar to Level 1 BLAS, are of low computational
intensity and, ideally, DLA algorithms must be designed to avoid them. An
example from the area of DLA is the delayed update approach where the appli-
cation of a sequence of Level 2 BLAS is delayed and accumulated in order to
be applied at once as a more efficient single matrix-matrix multiplication [2].
In many cases, like MAGMA’s mixed-precision iterative refinement solvers [9]
or two-sided matrix factorizations [10], this is not possible, and efficient imple-
mentations are crutial for the performance. This section considers the GPU
implementations of two fundamental Level 2 BLAS operations, namely the
matrix-vector multiplication routines for correspondingly general (xGEMV)
and symmetric matrices (xSYMV).

4.2.2.1 xGEMV

The xGEMV matrix-vector multiplication routine performs one of:

y := αAx + βy or y := αAT x + βy,

where A is an M by N matrix, x and y are vectors, and α and β are scalars.
The two cases are considered separately as follows:

Non-Transposed Matrix: The computation in this case can be organized
in one-dimensional grid of TBs of size NTB where each block has NT = NTB

threads, as shown in Figure 4.1(b). Thus, each thread computes one element
of the resulting vector y.

GEMV is the first of the kernels considered to which blocking can be ap-
plied. Although matrix A cannot be reused in any blocking, vector x can be
reused by the threads in a TB. Specifically, the computation is blocked by
loading nb consequtive elements of x at a time into the shared memory (using
all NT threads). This part of x is then used by all TN threads in a TB to
multiply it by the corresponging NTB × nb submatrix of A. The process is
repeated N

NT B
times.

Note that the algorithm as described depends on two parameters: NTB and
nb. Figures 4.2(a), 4.2(b) compare the performance for cases NTB = nb =
16, 32, 64 with that of CUBLAS 2.3. The performances are for matrix sizes
M = N that are divisible by the corresponding blocking sizes. Also, the start-
ing addresses of A, x, and y are taken to be divisible by 16∗sizeof(element)

62 Scientific Computing with Multicore and Accelerators

0

10

20

30

40

50

60

70

0 1536 3072 4608 6144 7680

G
F

lo
p/

s

Matrix size

NTB=16
NTB=32
NTB=64

CUBLAS-2.3

(a) Single Precision

0

5

10

15

20

25

30

0 1536 3072 4608 6144 7680

G
F

lo
p/

s

Matrix size

NTB=16
NTB=32
NTB=64

CUBLAS-2.3

(b) Double Precision

FIGURE 4.2: Performance of xGEMV (non-transpose) on a GTX 280.

(a) Basic implementation (b) Optimized implementation

FIGURE 4.3: Two memory access implementations of xGEMV (transpose).

and the leading dimension of A is divisible by 16. This guarantees that all
memory accesses in the algorithm are coalescent.

Transposed Matrix: Following the non-transposed version approach leads
to poor performance because the memory acceses are not going to be coalesced
(see Figure 4.3(a)). To improve the speed on accessing the data, blocks of the
matrix A can be first loaded into the shared memory using coalesced memory
accesses, and second, data only from the shared memory can be used to do
all the necessary computations (see Figure 4.3(b)).

Although the new version significantly improves the performance, experi-
ments that increase the design space of the algorithm show that further im-
provements are possible. In particular, one exploration direction is the use of
higher numbers of threads in a TB, e.g., 64, as high-performance DLA kernels
are associated with the use of 64 threads (and occasionally more). Using 64
threads directly does not improve performance though because the amount
of shared memory used (a 64 × 64 matrix) gets to be excessive, prohibiting
the effective scheduling of that amount of threads [8]. Decreasing the use of
shared memory, e.g., to a 32×32 matrix, while having a higher level of thread
parallelism, e.g., a grid of 32 × 2 threads, is possible in the following way:

BLAS for GPUs 63

0

10

20

30

40

50

60

70

0 1536 3072 4608 6144 7680

G
F

lo
p/

s

Matrix size

NTB=32X2
NTB=32x4

CUBLAS-2.3

(a) Single Precision

0

5

10

15

20

25

30

0 1536 3072 4608 6144 7680

G
F

lo
p/

s

Matrix size

NTB=32X2
NTB=32X4

CUBLAS-2.3

(b) Double Precision

FIGURE 4.4: Performance of xGEMV (transpose) on a GTX 280.

(a) TYPE A (b) TYPE B (c) TYPE C

FIGURE 4.5: Three cases of TB computations in xSYMV.

(1) two groups of 32 × 1 threads, e.g., denoted by 32j where j = 0/1, load
correspondingly the two 32 × 16 submatrices of the shared memory matrix
using coalesced memory accesses, (2) each group performs the computation
from the second GEMV version but constrained to the 16 × 32 submatrix of
the shared memory matrix, accumulating their independent yj results. The
final result y := y0 + y1 can be accumulated by one of the j = 0/1 threads.

The same idea can be used with more threads, e.g., 32×4, while using the
same amount of shared memory. Performance results are shown in Figure 4.4
along with a comparison to the performance from CUBLAS 2.3.

4.2.2.2 xSYMV

The xSYMV matrix-vector multiplication routine performs:

y := αAx + βy,

where α and β are scalars, x and y are vectors of size N , and A is an N by
N symmetric matrix, stored in the upper or lower triangular part of a two-
dimensional array of size N×N . The difficulty of designing a high-performance
SYMV kernel stems from the triangular data storage, which is more challeng-
ing to organize a data parallel computation with coalescent memory accesses.

64 Scientific Computing with Multicore and Accelerators

0

10

20

30

40

50

0 1024 2048 3072 4096 5120 6144 7168 8192

G
F

lo
p/

s

Matrix size

MAGMA
CUBLAS-2.3

(a) Single Precision

0

10

20

30

40

50

0 1024 2048 3072 4096 5120 6144 7168 8192

G
F

lo
p/

s

Matrix size

MAGMA
CUBLAS-2.3

(b) Double Precision

FIGURE 4.6: Performance of xSYMV on a GTX 280.

Indeed, if A is given as an N × N array, storing both the upper and lower
triangular parts of the symmetric matrix A, the SYMV kernel can be im-
plemented using GEMV. Similar to GEMV, the computation is organized in
one-dimensional grid of TBs of size NTB , where each block has NT = NTB

threads. A TB computation can be classified as one of three cases (see the
illustration in Figure 4.5):

• Type A—TB threads do SYMV followed by GEMV (transpose);

• Type B—threads do GEMV (non-transpose) followed by SYMV and
GEMV (transpose);

• Type C—threads do GEMV (non-transpose) followed by SYMV.

This way the computation within a TB is converted into one/two GEMVs (to
reuse the GEMV kernels) and an SYMV involving a matrix of size NTB ×

NTB . The remaining SYMV is also converted into a GEMV by loading the
NTB×NTB matrix into the GPU’s shared memory and generating the missing
symmetric part in the shared memory (a process defined as mirroring). Figure
4.6 compares the performance for kernel with parameters NTB = nb = 32,
NT = 32× 4 with that of CUBLAS 2.3.

4.2.3 Level 3 BLAS

Level 3 BLAS routines are of high computational intensity, enabling their
implementations (and that of high-level DLA algorithms based on Level 3
BLAS) to get close within the computational peak of ever evolving architec-
tures, despite that architectures are evolving with an exponentially growing
gap between their compute and communication speeds. The shared memory of
GPUs, similar to memory hierarchy in standard CPUs, can be used to develop
highly efficient Level 3 BLAS kernels. This section describes the GPU im-
plementations of three primary Level 3 BLAS operations: the matrix-matrix

BLAS for GPUs 65

FIGURE 4.7: The GPU GEMM (C = AB) of a single TB.

multiplication (xGEMM), the symmetric rank-k update (xSYRK), and the
triangular matrix solver (xTRSM).

4.2.3.1 xGEMM

The xGEMM matrix-matrix multiplication routine performs one of:

C := α op(A)op(B) + βC,

where op(X) is X, or XT , α and β are scalars; and A, B, and C are matri-
ces. Crutial for the performance is the application of blocking—schematicly
represented in Figure 4.7 for the case of C := αAB + βC and described as
follows [6]. The computation is done on a two-dimensional grid of TBs of size
NTBX × NTBY and each TB is assigned to NT = NTX × NTY threads. For
simplicity, take NT = NTBX . Then, each thread is coded to compute a row
of the submatrix assigned to the TB. Each thread accesses its corresponding
row of A, as shown by an arrow, and uses the K × NTBY submatrix of B
for computing the final result. This TB computation can be blocked, which is
crucial for obtaining high performance. In particular, submatrices of B of size
nb×NTBY are loaded into shared memory and multiplied nb times by the cor-
responding NTBX×1 submatrices of A. The NTBX×1 elements are loaded and
kept in registers while multiplying them with the nb×NTBY part of B. The
result is accumulated to the resulting NTBX ×NTBY submatrix of C, which
is kept in registers throughout the TB computation (a row per thread, as al-
ready mentioned). This process is repeated until the computation is over. All
memory accesses are coalesced. Kernels for various NTBX , NTBY , NTX , NTY ,
and nb can be automatically generated (see Section 4.3.3) to select the best
performing kernel for particular architecture and GEMM parameters. A sam-

66 Scientific Computing with Multicore and Accelerators

Kernel NTBX NTBY nb NTX NTY

K1 32 8 4 8 4
K2 64 16 4 16 4
K3 128 16 8 16 8
K4 256 16 16 16 16

TABLE 4.1: Key parameters of a sample of GPU GEMM kernels.

0

50

100

150

200

250

300

350

400

0 1536 3072 4608 6144

G
F

lo
p/

s

Matrix size

K1
K2
K3
K4

CUBLAS-2.3

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1536 3072 4608 6144

G
F

lo
p/

s

Matrix size

K1
K2
K3
K4

CUBLAS-2.3

(b) Double Precision

FIGURE 4.8: Performance of GEMM (C = αABT + βC) on a GTX 280.

ple choice of these kernels is shown in Table 4.1. Figure 4.8 compares their
performances with that of CUBLAS 2.3 on square matrices. K1 performs well
for small matrices (e.g., of dimension ≤ 512) as it provides more parallelism
compared to the other kernels in Table 4.1. The performance deteriorations
experienced by some of the kernels are due to the GPUs global memory lay-
out and memory access patterns of hitting a particular memory module (a
phenomenon referred to by NVIDIA as partition camping).

This particular configuration works well when Op(A) = A, Op(B) = B.
The Op(A) = AT , Op(B) = BT case is similar—only the argument order and
the update location of C at the end of the kernel have to be changed, as:

C := α AT BT + βC or CT := α BA + βCT .

The Op(A) = AT , Op(B) = B kernel can be analogously developed except
that both A and B must be stored into shared memory.

4.2.3.2 xSYRK

The xSRYK routine performs one of the symmetric rank-k updates:

C := αAAT + βC or C := αAT A + βC,

where α and β are scalars, C is an N × N symmetric matrix, and A is an
N ×K matrix in the first case and a K ×N matrix in the second case. A TB

BLAS for GPUs 67

0

50

100

150

200

250

300

350

400

0 1536 3072 4608

G
F

lo
p/

s

Matrix size

MAGMABLAS
CULAS-2.3

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1536 3072 4608

G
F

lo
p/

s

Matrix size

MAGMABLAS
CUBLAS-2.3

(b) Double Precision

FIGURE 4.9: Performance of xSYRK on a GTX 280.

index reordering technique can be used to initiate and limit the computation
only to TBs that are on the diagonal or in the lower (correspondingly upper)
triangular part of the matrix. In addition, all the threads in a diagonal TB
compute redundantly half of the block in a data parallel fashion in order
to avoid expensive conditional statements that would have been necessary
otherwise. Some threads also load unnecessary data to ensure coalescent global
memory accesses. At the end, the results from the redundant computations
(in the diagonal TBs) are discarded and the data tile is correctly updated.
Figure 4.9 illustrates the performance gains in applying this technique.

4.2.3.3 xTRSM

The xTRSM routine solves one of the matrix equations:

op(A)X = αB or Xop(A) = αB,

where α is a scalar, X and B are M×N matrices, A is upper/lower triangular
matrix and op(A) is A or AT . Matrix B is overwritten by X.

Trading off parallelism and numerical stability, especially in algorithms
related to triangular solvers, has been known and studied before [11,12]. Some
of these TRSM algorithms are getting extremely relevant with the emerging
highly parallel architectures, especially GPUs. In particular, the MAGMA
library includes implementations that explicitly invert blocks of size 32 × 32
on the diagonal of the matrix and use them in blocked xTRSM algorithms.
The inverses are computed simultaneously, using one GPU kernel, so that the
critical path of the blocked xTRSM can be greatly reduced by doing it in
parallel (as a matrix-matrix multiplication). Variations are possible, e.g., the
inverses to be computed on the CPU, to use various block sizes, including
recursively increasing it from 32, etc. Similarly to xSYRK, extra flops can
be performed to reach better performance—the empty halves of the diagonal
triangular matrices can be set to zeros and the multiplications with them done
with GEMMs instead of with TRMMs. This avoids diverting warp threads and

68 Scientific Computing with Multicore and Accelerators

0

1

2

3

4

5

0 1536 3072 4608

G
F

lo
p/

s

Matrix size

MAGMABLAS
CUBLAS-2.3

(a) Single Precision

0

1

2

3

4

5

0 1536 3072 4608

G
F

lo
p/

s

Matrix size

MAGMABLAS
CUBLAS-2.3

(b) Double Precision

FIGURE 4.10: Performance of xTRSM on a GTX 280.

ensures efficient parallel execution. Figure 4.10 illustrates the performance
gains in applying this technique.

4.3 Generic Kernel Optimizations

This section addresses three optimization techniques that are crutial for
developing high performance GPU kernels. The first two techniques—pointer
redirecting (Section 4.3.1) and padding (Section 4.3.2)—are used in cases
where the input data are not aligned to directly allow coalescent memory
accesses, or when the problem sizes are not divisible by the partitioning sizes
required for achieving high performance. The third technique—auto-tuning
(Section 4.3.3)—is used to determine best performing kernels, partitioning
sizes, and other parameters for the various algorithms described.

An example demonstrating the need to address the cases mentioned is
given in Figure 4.11. Shown is the performance of the matrix-matrix multipli-
cation routine for a discrete set of matrix dimensions. Seen are performance
deteriorations, e.g., more than 24 GFlops/s in double precision (around 30%
of the peak performance) and even worse in single precision. The techniques
in this section, used as a complement to the kernels presented in Section 4.2,
aim to streamline the development of BLAS kernels for GPUs that are of
uniformly high performance.

4.3.1 Pointer Redirecting

A few possibilities of dealing with matrix dimensions not divisible by the
blocking factor can be explored. One approach is to have some “boundary”
TBs doing selective computation. This will introduce several if-else statements

BLAS for GPUs 69

in the kernel which will prevent the threads inside a TB to run in parallel.
Figure 4.12 shows the GEMM performance following this approach.

Another approach is instead of preventing certain threads from computing
(with if-else statements), to let them do similar work as the other threads in a
TB, and discard saving their results at the end. This can lead to some illegal
memory references as illustrated in Figure 4.13.

The pointer redirecting techniques are based on the last approach and
include redirecting the illegal memory references to valid ones, within the
matrix of interest, in a way that would allow the memory accesses to be
coalescent. The specifics of the redirecting depend on the kernel, but in general,
if a thread is to access invalid rows/columns of a matrix (beyond row/column
M/N), the access is redirected towards the last row/column.

Figure 4.14(a) shows the pointer redirecting for matrix A in GEMM with
Op(A) = A and Op(B) = B. Threads t1, t2, t3, and t4 access valid memory
location, and threads beyond that, e.g., t5, t6 access the memory accessed
by t4. As a result no separate memory read operation will be issued and
no latency will be experienced for this extra load. Figure 4.14(b) shows the
data access pattern for matrix B – nb × NTBY data of matrix B is loaded
into shared memory by NTX ×NTY threads in a coalesced manner. The left
nb×NTBY block is needed, but the right nb×NTBY is only partially needed.
As discussed before, the illegal memory accesses will be redirected to the last
column of B. The redirection as done presents a simple solution that has little
overhead and does not break the pattern of coalesced memory access.

Figures 4.15 and 4.16 show the performance results for GEMM using the
pointer redirecting technique. In double precision the performance is improved
by up to 24 GFlops/s and in single precision by up to 170 GFlops/s.

The technique is applied similarly to the other kernels. The case where the
starting address of any of the operands is not a multiple of 16∗sizeof(element)
(but the leading dimension is a multiple of 16) is also handled similarly—
threads that must access rows “before” the first are redirected to access the
first.

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144

G
F

lo
p/

s

Matrix size

CUBLAS-2.3

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F

lo
p/

s

Matrix size

CUBLAS-2.3

(b) Double Precision

FIGURE 4.11: Performance of GEMM on square matrices on a GTX 280.

70 Scientific Computing with Multicore and Accelerators

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144

G
F

lo
p/

s

Matrix size

IF

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F

lo
p/

s

Matrix size

IF

(b) Double Precision

FIGURE 4.12: Performance of GEMM with conditional statements.

FIGURE 4.13: Possible illegal memory references in GEMM.

(a) Acessing matrix A (b) Accessing matrix B

FIGURE 4.14: GPU GEMM (C = αAB + βC) with pointer redirecting.

BLAS for GPUs 71

0

10

20

30

40

50

60

70

80

0 64 128 192 256 320 384 448 512

G
F

lo
p/

s

Matrix size

MAGMABLAS
CUBLAS-2.3

(a) Small Dimension

0

10

20

30

40

50

60

70

80

4096 4160 4224 4288 4352 4416 4480 4544 4608

G
F

lo
p/

s

Matrix size

MAGMABLAS
CUBLAS-2.3

(b) Large Dimension

FIGURE 4.15: Performance of DGEMM on a GTX 280.

0

50

100

150

200

250

300

350

400

0 64 128 192 256 320 384 448 512

G
F

lo
p/

s

Matrix size

MAGMABLAS
CUBLAS-2.3

(a) Small Dimension

0

50

100

150

200

250

300

350

400

4096 4160 4224 4288 4352 4416 4480 4544 4608

G
F

lo
p/

s

Matrix size

MAGMABLAS
CUBLAS-2.3

(b) Large Dimension

FIGURE 4.16: Performance of SGEMM on a GTX 280.

72 Scientific Computing with Multicore and Accelerators

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144

G
F

lo
p/

s

Matrix size

SGEMM (Input and Output in CPU Memory)

MAGMABLAS
PAD/CUBLAS-2.3

(a) SGEMM

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F

lo
p/

s

Matrix size

DGEMM (Input and Output in CPU Memory)

MAGMABLAS
PAD/CUBLAS-2.3

(b) DGEMM

FIGURE 4.17: Performance of xGEMM with padding on a GTX 280.

4.3.2 Padding

If the input matrices are given on the CPU memory the performance can
be enhanced by padding, given that enough memory is available for it on
the GPU. Padding is the technique where a matrix of higher dimension (to
make the new size divisible by NTB) is allocated on the GPU memory, and
the extra elements initialized by zero. Figure 4.17 shows the performance of
xGEMM comparing the padding and pointer redirecting approaches when the
data are in the CPU memory. The results show that for small matrix sizes the
pointer redirecting gives better performance, and for larger matrices the two
approaches are almost identical, as it is actually expected.

Padding is applied to certain CPU-interface MAGMA routines [3], e.g.,
the LU factorization. In general, users of the CPU interface are encouraged
to apply “padding” to all routines, in the sense that users must provide at
least working space matrices on the GPU with leading dimensions divisible
by 16. Note that if the leading dimension is not divisible by 16 none of the
techniques presented will have coalescent memory accesses, unless internally
the data are copied into another padded matrix. This second form of padding
does not require zeroing the extra space—just allocating it so that coalescent
memory accesses are enabled.

4.3.3 Auto-Tuning

Automatic performance tuning (optimization), or auto-tuning in short,
is a technique that has been used intensively on CPUs to automatically
generate near-optimal numerical libraries. For example, ATLAS [13, 14] and
PHiPAC [15] are used to generate highly optimized BLAS. In addition,
FFTW [16] is successfully used to generate optimized libraries for FFT, which
is one of the most important techniques for digital signal processing. With the
success of auto-tuning techniques on generating highly optimized DLA ker-
nels on CPUs, it is interesting to see how the idea can be used to generate
near-optimal DLA kernels on modern high-performance GPUs.

BLAS for GPUs 73

Indeed, work in the area [17] has already shown that auto-tuning for GPUs
is a very practical solution to easily port existing algorithmic solutions on
quickly evolving GPU architectures and to substantially speed up even highly
hand-tuned kernels.

There are two core components in a complete auto-tuning system:

Code generator The code generator produces code variants according to a
set of pre-defined, parametrized templates/algorithms. The code gener-
ator also applies certain state-of-the-art optimization techniques.

Heuristic search engine The heuristic search engine runs the variants pro-
duced by the code generator and finds out the best one using a feedback
loop, e.g., the performance results of previously evaluated variants are
used as a guideline for the search on currently unevaluated variants.

Below is a review of certain techniques and choices of parameters that
significantly impact the performance of the GEMM kernel. Therefore, these
techniques and parameters must be (and have been) incorporated into the
code generator of an auto-tuning GEMM system. The ultimate goal is to
develop similar auto-tuning for all of the BLAS of interest.

Auto-tuning GEMM: Figure 4.7 depicts the algorithmic view of a GEMM
code template. It was already mentioned that five parameters can criti-
cally impact performance (see Table 4.1 for a sample choice), and there-
fore are incorporated in a GEMM code generator. This choice though
can be extended and enhanced with various optimization techniques:

Number of threads computing a row: Section 4.2.3.1 imposed the con-
straint NTX ×NTY = NTBX so that each thread in a TB is computing
an entire row of the submatrix of C computed by the TB (denoted fur-
ther as BC). This constraint can be lifted to introduce an additional
template parameter. Depending upon the value of NT each thread will
compute either an entire row or part of a row. For example, suppose
NTBY = 16 and NTBX = 64, and the TB has 16 × 4 threads, then
each thread will compute exactly one row of BC. If the thread block
has 16× 8 threads, then each thread will compute half of a row.

A/B being in shared memory: As described in Section 4.2.3.1, whether
A or B is put into shared memory plays a crucial factor in the kernel’s
performance. Different versions of GEMM (Op(X) is X or XT) require
putting A and/or B into shared memory. This parameter of the auto-
tuner is denoted by shAB . When only (part of) A is in shared memory
each thread per TB computes an entire column or part of a column of
BC. When both A and B are in shared memory the computation can
be splitted in terms of rows or columns of the resulting submatrix of C.

Submatrix layout in shared memory: This parameter determines the
layout of each NTBX × nb submatrix of the matrix A (referred to as

74 Scientific Computing with Multicore and Accelerators

BA from now on) or NTBY × nb submatrix of the matrix B (referred
to as BB from now on) in the shared memory, i.e., whether the copy of
each block BA or BB in the shared memory is transposed or not. Since
the shared memory is divided into banks and two or more simultaneous
accesses to the same bank cause bank conflicts, transposing the layout
in the shared memory may help reduce the possibility of bank conflicts,
thus potentially improving the performance.

Amount of allocated shared memory: Two parameters, offsetBA and
offsetBB , relate to the actual allocation size of BA or BB in shared
memory. When NTBY = 16 and nb = 16, it requires 16×16 2D-array for
BB in shared memory. Depending upon the computation sometimes it
is better to allocate some extra memory so that the threads avoid bank
conflict while accessing operands from shared memory data. It means
allocating a 16×17 array instead of 16×16. So there is an offset of 1. It
could be 0, 2, or 3 depending upon other parameters and the nature of
computation. The auto-tuner handles this offset as a tunable parameter
in internal optimization.

Prefetching into registers: As in CPU kernels, GPU kernels can benefit
by prefetching into registers. For the access of matrices A and B, the
auto-tuner inserts prefetch instruction for the data needed in the next
iteration and checks the effect. Insertion of prefetch instruction leads to
usage of registers which might limit the parallelism of the whole code.
The auto-tuner investigates this with various combinations of prefetches:
no prefetch, prefetch A only, prefetch B only, and prefetch both A and
B, to finally pick the best combination.

Loop optimization techniques: Different state-of-the-art loop optimiza-
tion techniques such as strip mining and loop unrolling are incorporated
in order to extract parallelism and achieve performance. Another inter-
esting loop optimization technique, namely circular loop skewing, was
incorporated in the auto-tuner to deal with GPU global memory layout.
Circular loop skewing is based upon a very simple idea of reordering the
computation in the inner loop. In the context of GPUs, inner loops are
considered the data parallel tasks that make up a kernel. These tasks
are scheduled by CUDA (controlling the outer loop) on the available
multiprocessors and the order of scheduling sometimes is crucial for the
performance. Circular loop skewing techniques are incorporated to ex-
plore benefits of modified scheduling. Their most important use is in
removing performance deteriorations related to partition camping (de-
scribed above).

Precision: The code generator also takes precision as a parameter.

The code generator takes all these parameters as input and generates the

BLAS for GPUs 75

Kls Prec Ntbx Ntby nb Ntx Nty shAB T rns op(A) op(B) skewing

K1 S/DP 32 8 4 8 4 B No N T No
K2 S/DP 64 16 4 16 4 B No N T No
K3 S/DP 128 16 8 16 8 B No N T No
K4 S/DP 256 16 16 16 16 B No N T No
K5 DP 32 32 8 8 8 AB No T N No
K6 DP 64 16 16 16 4 B Yes N N No
K7 DP 128 16 8 16 8 B Yes N N No
K8 SP 64 16 4 16 4 B No N T All
K9 SP 64 16 4 16 4 B No N T Selective

TABLE 4.2: Different kernel configurations.

kernel, the timing utilities, the header file, and the Makefile to build the ker-
nel. The code generator first checks the validity of the input parameters before
actually generating the files. By validity it means (1) the input parameters
conform to hardware constraints, e.g., the maximum number of threads per
thread block NTX × NTY ≤ 512 in GTX 280, and (2) the input parame-
ters are mutually compatible, e.g., (NTBX ×NTBY)%(NTX ×NTY) = 0, i.e.,
the load of BA’s data into share memory can be evenly distributed among
all the threads in a thread block, etc. By varying the input parameters, the
auto-tuner can generate different versions of the kernel, and evaluate their
performance, in order to identify the best one. Along the way the auto-tuner
tries to optimize the code by using different optimization techniques such as
prefetching, circular loop skewing and adjusting offset in shared memory allo-
cation as described above. One way to implement auto-tuning is to generate
a small number of variants for some matrices with typical sizes during instal-
lation time, and choose the best variant during run time, depending on the
input matrix size and high-level DLA algorithm.

Performance results: Table 4.2 gives the parameters of different xGEMM
kernels used in this section. The table also provides parameters for all the
kernels used in Section 4.2.3.1. The Trns parameter denotes if the kernel was
implemented by taking tranpose operation in both sides of the equation of the
original operation, as:

C := α AT BT + βC or CT := α BA + βCT .

Figure 4.18 compares the performance of the xGEMM auto-tuner in dou-
ble precision with the CUBLAS 2.3 for multiplying square matrices where
Op(A) = AT and Op(B) = B. It can be seen that the performance of the
auto-tuner is apparently 15% better than the CUBLAS 2.3 DGEMM. The
fact that the two performances are so close is not surprising because the auto-
tuned code and CUBLAS 2.3’s code are based on the same kernel, and this
kernel was designed and tuned for current GPUs (and in particular the GTX
280), targeting high performance for large matrices.

The global memory layout of current GPUs presents challenges as well
as opportunities for auto-tuners. As shown in Figure 4.19(a), CUBLAS
2.3 SGEMM has performance deteriorations for certain problem sizes when

76 Scientific Computing with Multicore and Accelerators

0

10

20

30

40

50

60

70

80

1024 2048 3072 4096 5120 6144
G

F
lo

p/
s

Matrix size

K5
CUBLAS-2.3

FIGURE 4.18: Performance of auto-tuned DGEMM kernel (Op(A) = AT ,
Op(B) = B) on a GTX 280.

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144 7168 8192

G
F

lo
p/

s

Matrix size

CUBLAS-2.3 Op(B)=B
CUBLAS-2.3 Op(B)=B^T

(a) Performance comparison of SGEMM
kernel between Op(B) = B and Op(B) =
BT with Op(A) = A.

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144 7168 8192

G
F

lo
p/

s

Matrix size

K3
CUBLAS-2.3

K4

(b) Auto-tuned kernel with tuned algorith-
mic parameter.

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144 7168 8192

G
F

lo
p/

s

Matrix size

K8
CUBLAS-2.3

(c) Auto-tuned kernel with circular skew-
ing in all dimensions.

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144 7168 8192

G
F

lo
p/

s

Matrix size

K8
K9

(d) Auto-tuned kernel with selective circu-
lar skewing.

FIGURE 4.19: Performance of the auto-tuned SGEMM (Op(A) = A,
Op(B) = BT) kernel for square matrices on a GTX 280.

BLAS for GPUs 77

Op(A) = A and Op(B) = BT . Interestingly, when Op(A) = A and Op(B) =
B, the performance is very smooth. The reason for this is that GPU global
memory is interleaved into a number of memory modules and the memory re-
quests from all the concurrently running thread blocks may not be evenly dis-
tributed among the GPU memory modules. As a result the memory requests
are sequentially processed and all the threads experience huge memory la-
tency. This phenomenon is referred to as partition camping in NVIDIA terms.
The auto-tuner found two kernels (K3, K4), as shown in Figure 4.19(b), that
work significantly better in this situation. K3 and K4 work better because as
partition size NTBX is increased, the total number of accesses to global mem-
ory for matrix B’s data is correspondingly 1/2 and 1/4 compared to that for
kernel K2 (besides, TLP is increased). Kernels K3 and K4 perform fair com-
pared to CUBLAS 2.3 in any dimension, and remarkably well for the problem
sizes where CUBLAS 2.3 has performance deteriorations. Interestingly, the
auto-tuner was successful in finding a better kernel by applying circular loop
skew optimization in kernel K2. The performance is shown in Figure 4.19(c).
Note that there are no performance deteriorations and performance is better
than CUBLAS 2.3 for all matrix sizes. However, this technique does not work
in all cases and may have to be applied selectively. The performance of such
kernel (K9) is shown in Figure 4.19(d).

Finally, we point out that in the area of DLA, it is very important to have
high-performance GEMMs on rectangular matrices, where one size is large-
and the other is fixed within a certain block size (BS), e.g., BS = 64, 128,
up to about 256 on current architectures. For example, in an LU factorization
(with look-ahead) it requires two types of GEMM, namely one for multiplying
matrices of size N×BS and BS×N−BS, and another for multiplying N×BS
and BS×BS matrices. This situation is illustrated on Figure 4.20, where we
compare the performances of the CUBLAS 2.3 vs auto-tuned DGEMMs oc-
curring in the block LU factorization of a matrix of size 6144 × 6144. The
graphs show that the auto-tuned code significantly outperforms (up to 27%)
the DGEMM from CUBLAS 2.0.

These results support experiences and observations by others on “how sen-
sitive the performance of GPU is to the formulations of your kernel” [18] and
that an enormous amount of well-thought experimentation and benchmark-
ing [6, 18] is needed in order to optimize performance.

4.4 Summary

Implementations of the BLAS interface are a major building block of dense
linear algebra libraries, and therefore must be highly optimized. This is true
for GPU computing as well, as evident from the MAGMA library, where the
availability of fast GPU BLAS enabled a hybridization approach that stream-

78 Scientific Computing with Multicore and Accelerators

0

10

20

30

40

50

60

70

80

1000 2000 3000 4000 5000 6000

G
F

lo
p/

s

Matrix size

N x N-BS x BS : MAGMABLAS
N x N-BS x BS : CUBLAS-2.3
N x BS x BS : MAGMABLAS

N x BS x BS : CUBLAS-2.3

(a) BS=64

0

10

20

30

40

50

60

70

80

1000 2000 3000 4000 5000 6000

G
F

lo
p/

s

Matrix size

N x N-BS x BS : MAGMABLAS
N x N-BS x BS : CUBLAS-2.3
N x BS x BS : MAGMABLAS

N x BS x BS : CUBLAS-2.3

(b) BS=128

FIGURE 4.20: Performance comparison of the auto-tuned (solid line) vs
CUBLAS 2.3 DGEMMs occurring in the block LU factorization (for block
sizes BS = 64 on the left and 128 on the right) of a matrix of size 6144×6144.
The two kernels shown are for multiplying N×BS and BS×N−BS matrices
(denoted by N×N−BS×BS), and N×BS and BS×BS matrices (denoted by
N×BS×BS). K6 was used when BS = 64 and K7 was used when BS = 128.

lined the development. This chapter provided guidance on how to develop
these needed high-performance BLAS kernels for GPUs. Described were not
only basic principles and important issues for achieving high performance,
but also specifics on the development of each of the BLAS considered. In par-
ticular, the stress was on the two important issues—blocking and coalesced
memory access—demonstrated in the kernels’ design throughout the chapter.
The main ideas were demonstrated on general and symmetric matrices, in
both the transpose and non-transpose cases, for a selection of Level 1, 2, and
3 BLAS kernels that are crucial for the performance of higher-level DLA al-
gorithms. Moreover, three optimization techniques that are GPU specific and
crucial for developing high performance GPU kernels, were considered. The
first two techniques, pointer redirecting and padding, are used in cases where
the input data is not aligned to directly allow coalescent memory accesses,
or when the problem sizes are not divisible by the partitioning sizes required
for achieving high performance. The third technique, auto-tuning, is used to
automate the process of generating and determining best performing kernels,
partitioning sizes, and other parameters for the various algorithms of interest.

The implementations of variation of the kernels described are avail-
able as part of MAGMA BLAS library through the MAGMA site
http://icl.eecs.utk.edu/magma/.

BLAS for GPUs 79

Bibliography

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-2006-183, Electrical
Engineering and Computer Sciences Department, University of California
at Berkeley, 2006.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA,
1992. http://www.netlib.org/lapack/lug/.

[3] S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA version 0.2 Users’
Guide. http://icl.cs.utk.edu/magma, November 2009.

[4] BLAS: Basic linear algebra subprograms. http://www.netlib.org/
blas/.

[5] CUDA CUBLAS Library. http://developer.download.nvidia.com.

[6] V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear
algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–11, Piscataway, NJ, 2008. IEEE Press.

[7] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning GEMM
for GPUs. In ICCS ’09: Proceedings of the 9th International Confer-
ence on Computational Science, pages 884–892, Berlin, Heidelberg, 2009.
Springer-Verlag.

[8] NVIDIA CUDA Compute Unified Device Architecture—Programming
Guide. http://developer.download.nvidia.com, 2007.

[9] S. Tomov, R. Nath, and J. Dongarra. Dense linear algebra solvers for
multicore with GPU accelerators. UTK EECS Technical Report ut-cs-
09-649, December 2009.

[10] S. Tomov and J. Dongarra. Accelerating the reduction to upper Hessen-
berg form through hybrid GPU-based computing. Technical Report 219,
LAPACK Working Note 219, May 2009.

[11] James W. Demmel. Trading Off Parallelism and Numerical Stability,
EECS Department, University of California, Berkeley, UCB/CSD-92-702,
September 1992.

[12] Nicholas J. Higham. Stability of parallel triangular system solvers, SIAM
J. Sci. Comput., 16(2):400–413, 1995.

80 Scientific Computing with Multicore and Accelerators

[13] R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimiza-
tions of Software and the ATLAS Project. Parallel Computing, 27(1–2):3–
35, 2001.

[14] Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine
Petitet, Rich Vuduc, Clint Whaley, and Katherine Yelick. Self adapt-
ing linear algebra algorithms and software. Proceedings of the IEEE 93
(2005), no. 2, special issue on “Program Generation, Optimization, and
Adaptation.” Proceddings, vol. 93, 2, pp. 293–312.

[15] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and James Demmel. Opti-
mizing Matrix Multiply Using PHiPAC: A Portable, High-Performance,
ANSI C Coding Methodology. International Conference on Supercom-
puting, 1997, pp. 340–347.

[16] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software
architecture for the FFT. Proc. 1998 IEEE Intl. Conf. Acoustics Speech
and Signal Processing, vol. 3, IEEE, 1998, pp. 1381–1384.

[17] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning GEMMfor
GPUs. In ICCS ’09, pages 884–892, Berlin, Heidelberg, 2009. Springer-
Verlag.

[18] Michael Wolfe. Compilers and more: Optimizing GPU kernels. HPC
Wire, http://www.hpcwire.com/features/33607434.html, October 2008.

