
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Autotuning in High-
Performance Computing
Applications
By PRASANNA BALAPRAKASH, JACK DONGARRA , Fellow IEEE, TODD GAMBLIN, Member IEEE,

MARY HALL , Senior Member IEEE, JEFFREY K. HOLLINGSWORTH, Senior Member IEEE,
BOYANA NORRIS, AND RICHARD VUDUC, Member IEEE

ABSTRACT | Autotuning refers to the automatic generation of

a search space of possible implementations of a computation

that are evaluated through models and/or empirical measure-

ment to identify the most desirable implementation. Autotun-

ing has the potential to dramatically improve the performance

portability of petascale and exascale applications. To date,

autotuning has been used primarily in high-performance appli-

cations through tunable libraries or previously tuned applica-

tion code that is integrated directly into the application. This

paper draws on the authors’ extensive experience applying

autotuning to high-performance applications, describing both

successes and future challenges. If autotuning is to be widely

used in the HPC community, researchers must address the

Manuscript received July 7, 2017; revised December 7, 2017; accepted
January 15, 2018. The work of P. Balaprakash and M. Hall was supported in part
by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security
Administration. The work of J. Dongarra was supported by the National Science
Foundation under Award ACI-1642441. A portion of the work of T. Gamblin was
performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. The work
of M. Hall, J. K. Hollingsworth, and B. Norris was supported by the U.S.
Department of Energy, Office of Advanced Scientific Computing Research
(ASCR), Scientific Discovery through Advanced Computing (SciDAC) program
under Award ER26054. The work of M. Hall was additionally supported by
National Science Award SHF-1564074. The work of J. K. Hollingsworth was
additionally supported by the ASCR X-Stack Project under Award ER26143 and
the Department of Defense through a contract with the University of Maryland.
(Corresponding author: Mary Hall.)

P. Balaprakash is with the Argonne National Laboratory, Argonne,
IL 60439 USA.

J. Dongarra is with the University of Tennessee, Knoxville, TN 37996 USA, with
the Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA, and also with the
University of Manchester, Manchester M13 9PL, U.K.

T. Gamblin is with the Lawrence Livermore National Laboratory, Livermore,
CA 94550 USA.

M. Hall is with the University of Utah, Salt Lake City, UT 84112 USA (e-mail:
mhall@cs.utah.edu).

J. K. Hollingsworth is with the University of Maryland, College Park,
MD 20742 USA.

B. Norris is with the University of Oregon, Eugene, OR 97403 USA.

R. Vuduc is with the Georgia Institute of Technology, Atlanta, GA 30332 USA.

Digital Object Identifier 10.1109/JPROC.2018.2841200

software engineering challenges, manage configuration over-

heads, and continue to demonstrate significant performance

gains and portability across architectures. In particular, tools

that configure the application must be integrated into the

application build process so that tuning can be reapplied as

the application and target architectures evolve.

KEYWORDS | High-performance computing; performance

tuning programming systems.

I. I N T R O D U C T I O N

Since the first petascale supercomputer nearly a decade
ago—the RoadRunner comprised of standard AMD64 mul-
ticores and custom IBM Cell processors—we have wit-
nessed a diversity of supercomputing architectures that
pose significant challenges for scientific application devel-
opers. Indeed, the four most powerful supercomputers
in the world at the end of 2017—TaihuLight, Tianhe-2,
PizDaint, and Gyoukou—rely on fundamentally different
processor architectures from distinct hardware vendors.
Because of profound differences in architecture and pro-
gramming models, high-performance applications must be
optimized and frequently rewritten in an architecture-
specific way to attain acceptable performance. A manual
code rewrite necessitated each time a new supercomputer
architecture or architecture generation enters the scene is
prohibitively expensive and limits the porting of applica-
tions to new platforms.

Clearly, a desirable feature of high-performance appli-
cations is performance portability, whereby the same
application code can achieve high performance across a
diversity of architectures. Performance portability is cur-
rently difficult to achieve. Even with programming model
changes that enable this diversity of target architectures
to be expressed, such as support for CPUs and GPUs in
OpenMP 4, a code that targets one type of platform still
may not perform well on another.

0018-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

PROCEEDINGS OF THE IEEE 1

https://orcid.org/0000-0002-3058-7573
https://orcid.org/0000-0003-3247-1782


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

Suppose that a single implementation is written by
application developers and that porting of that application
to different architectures is somehow automated. If suc-
cessful, this strategy eliminates the high-performance
computing (HPC) programmers’ burden in managing
architectural diversity. This paper describes such an
approach, called autotuning, which involves automatic
generation of a search space of possible implementa-
tions of a computation that are evaluated through mod-
els and/or empirical measurement to identify the most
desirable implementation. Although autotuning is usually
employed to reduce execution time, multiobjective tun-
ing may optimize across a variety of criteria including
performance, energy efficiency, peak power, or reliability.
The impact of using autotuning as opposed to manual
tuning includes increased programmer productivity, ease
of porting to new platforms and, in some cases, better-
performing applications.

This paper describes our experiences working with HPC
application developers to develop autotuning technology
that meets these goals and is compatible with the develop-
ment of HPC production codes. In this paper we examine
the state of the practice in incorporating autotuned code
into HPC applications, insights from prior work, and the
challenges in advancing this technology into wider and
long-term use.

To examine the various ways in which autotuning can
be employed, we first categorize a number of aspects
of autotuning. The subsequent sections describe existing
autotuning tools, followed by case studies from prior work
that illustrate the strengths and weaknesses of approaches
with respect to these aspects. The last two sections discuss
the software engineering challenges and future directions
that will increase the benefits of this valuable technology.

II. O V E RV I E W

Fig. 1 presents an overview of the components of auto-
tuning systems. Autotuning starts with an application or

kernel of interest, along with a set of known tuning
parameters. Tuning parameters are used in conjunction
with the kernel to generate a set of versions or variants
of the code. The goal of the autotuner is to select the
best-performing variant from the search space described
by the tuning parameters. Rectangles capture functionality
that might be separate tools or tuning data. The figure
also shows the differences in autotuning frameworks on
the continuum from systems that perform autotuning at
compile time (or tuning time) to runtime. The vertical
bars delineate this range. For example, the first or leftmost
vertical bar indicates that all analysis, modeling, empirical
tests, and so on are deferred to actual program execution
time, whereas the rightmost vertical bar indicates that all
the autotuning is completed in an offline tuning phase.
In the middle are online or incremental tuning, which
occurs over one or multiple runs of an application, and
runtime variant selection, where the selection of code to be
executed is deferred to runtime based on a model derived
from offline training.

Table 1 characterizes several of these aspects of autotun-
ing in current use. The aspects considered cover the space
of the autotuning literature and will be described in more
detail, including tradeoffs in approaches, in the remainder
of this paper.

A. How Packaged

At the heart of autotuning is a search space of code
variants that are functionally equivalent to an original
implementation. These are often packaged as libraries of
commonly used numerical functions such as linear algebra
and fast Fourier transform (FFT). However, one also can
employ compiler and code generation tools that compose
a collection of code transformations to generate opti-
mized code or express the code variants at the application
level. Recently, autotuning has been built into embedded
domain-specific tools and execution frameworks, where
the search space arises from the common framework.

Fig. 1. Components of autotuners on a continuum from compile time to runtime support, with examples.

2 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

Table 1 Overview of Issues in Autotuning for High-Performance Computing

B. Approach to Selection

Autotuners can select among code variants in many dif-
ferent ways. The simplest approach is to execute each code
variant, measure its runtime (or other objective function),
evaluate the performance of all variants, select the best
one, and include that variant in the final code to be run.
These are called empirical autotuners. Because the search
space may be large, intelligent search methods and models
may be used to iteratively prune the variant space as
evaluation takes place. Instead of executing trials directly,
some autotuners may train models from trial executions or
from historical data. A runtime prediction model can be
used as a proxy for real kernel executions, which allows a
tool to more rapidly search the tuning parameter space,
especially for long-running kernels. Models arising from
training are particularly useful when selection depends
on input data or other aspects of execution context; such
decision models are consulted at runtime to select variants
based on contextual features. Application developers may
also embed hints in their code to influence the choice of
variant at runtime.

C. Types of Decisions

Code variants may affect code organization, data struc-
tures, high-level algorithms, and low-level implementation
details. In order to achieve performance portability, deci-
sions on parallelization (how much and how many levels
of parallelism) and memory hierarchy optimizations (e.g.,
data placement, blocking/tiling and tile size) will necessar-
ily depend on the architecture. If the transformations used

in code generation can alter the behavior or accuracy of
the kernel, a functional equivalence verification step may
be added to ensure that each variant yields correct results.
Incorrect variants may be regenerated or excluded from
consideration.

D. When to Apply

Depending on the architecture, the application domain,
and the type of code being tuned, the components can
be implemented in many ways as shown in Fig. 1 by
the dashed lines. An extensive autotuning search can be
expensive. Consequently, autotuning is typically performed
offline, prior to application execution (rightmost dashed
line). The end user can be completely uninvolved in auto-
tuning if it is applied only once each time the software
is ported to a new architecture by the library or appli-
cation developer (not shown). If the application is being
modified, then offline autotuning is needed each time the
tuned computation or its context changes (e.g., a new
data layout changes the performance). At the other end
of the spectrum, the entire search is executed at runtime,
with help from dynamic compilation servers to generate
different code variants (leftmost). Alternatively, when an
end user is unable or unwilling to participate in an offline
or dynamic tuning phase, a changing application must be
incrementally tuned. This requires significant additional
infrastructure that includes a performance database that
records the history of prior measurements as well as
dynamic compilation and linking (second from left). Other
tools take a hybrid approach, deferring variant selection

PROCEEDINGS OF THE IEEE 3



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

decisions until runtime, and leverage training data from
prior or training runs (third from left).

E. Integration Into Applications

The most common use of autotuning in production HPC
codes is to directly incorporate the tuned code, particularly
libraries, into the application through either compilation
or linking. In this way, the code does not change; once the
code is verified, the application developer can be confident
that the code is correct. This approach has two disadvan-
tages, however. First, the code resulting from autotuning
will be architecture specific (and possibly unreadable if
automatically generated), and so the goal of performance
portability is lost. Second, because the tuned code was
generated for a specific execution context, over time it will
become less optimized or unsuitable for new architectures
or in conjunction with application changes. Where multiple
code variants may be appropriate depending on execution
context, these may all be compiled into the application,
along with a selection function that decides which code
variant to execute. When the desired code variants become
too large to compile into the application, then online code
generation, compilation, and linking are also required for
dynamic tuning.

F. Runtime Measurement

For tuning tools that rely on dynamic feedback at run-
time, measurement tools need to be integrated with the
application as well as autotuned code. This integration
can be accomplished with binary instrumentation/profiling
tools such as Dyninst [1], or with hints from the applica-
tion using semantic annotation tools such as Caliper [2].
In the former case, measurement is transparent, whereas
tools like Caliper are designed to collect useful tuning
hints from the developer. For example, the Apollo system
described in the next section can build tuning models that
make different decisions based on the particular physics
phase or solver iteration of a simulation. Caliper simplifies
the correlation of annotations at multiple levels of the soft-
ware stack. Once collected, performance data can be stored
in a database for retrieval in future experiments, with a
naming scheme that clarifies the point in the search space
for each measurement and adequate provenance informa-
tion to understand its relevance, for example, TAUdb [3].

III. E X I S T I N G A U T O T U N I N G T O O L S

We describe in more depth a collection of autotuning tools
that have been used for autotuning HPC applications.

A. Libraries

The first autotuning systems were packaged as libraries.
This choice was enabled in part by layered library designs
in which a relatively small number of performance-critical
subroutines could be isolated behind a standard appli-
cation program interface (API), which hardware vendors

could then tune for their platforms. However, wherever
such platform-specific implementations were unavailable,
too costly, or not fast enough, researchers naturally studied
techniques to generate and tune a library implementation
automatically.

One of the earliest motivating examples of such an
API was the Basic Linear Algebra Subprograms (BLAS)
standard, which defines a core set of primitives to support
dense linear algebra [4]. On top of the BLAS, it then
becomes possible to build fully featured linear algebra,
such as the widely used defacto standard, LAPACK and its
associated libraries ScaLAPACK, CLAPACK, and LAPACK95.
Within the BLAS, one of the most important primitives
is the general matrix multiply or GEMM operation [5].
The GEMM subroutine became an immediate target for
autotuning in the early 1990s, including the PHiPAC and
the Automatically Tuned Linear Algebra Software (ATLAS)
systems [6], [7].

To see how a typical library autotuner system might
work, consider ATLAS as an example. It generates efficient
code by running a series of timing experiments using
standard performance engineering techniques (e.g., loop
unrolling and blocking) to determine optimal parameters
and code structures. The process begins with detecting
specific hardware properties, such as cache sizes and the
floating-point pipeline length. Then, ATLAS systematically
explores the different possible implementations (of, say,
GEMM) of which there can be hundreds of thousands of
variations. After eliminating unlikely candidates by using
heuristics based on gathered information, ATLAS gener-
ates code to implement the remaining choices and then
compiles, executes, and measures their execution time to
choose the fastest. One also can extend the methodology
to work on modern platforms, such as GPUs [8], which
provide end-user developers a measure of performance
portability. The result is that the best implementations
often achieve large fractions of the highest possible per-
formance for a given platform.

Library autotuners are, by design, domain specific. They
exploit domain knowledge aggressively to improve per-
formance. As the ATLAS GEMM example demonstrates,
constraining the tuning problem to a specific kernel can
make it tractable to enumerate, prune, and then explore
a space of candidates. Beyond code, domain knowledge
can also enable the exploration of variants at a higher
level. For instance, the SPIRAL system encodes linear
signal transforms symbolically and then uses a symbolic
algebra engine to derive candidate algorithms [9]. Sym-
bolic algebraic techniques have also been applied to auto-
matic derivation of linear algebra methods [10], [11].
These methods use structural information that is usually
unavailable to more general-purpose code transformation
systems.

Additionally, domain-specific knowledge can extend to
inputs. Examples include the Sparsity and OSKI systems
for sparse matrix computations [12], [13], as well as
more recent extensions for sparse direct solvers and sparse

4 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

tensor computations [14], [15]. These systems use com-
bined knowledge about the computational kernels, the
likely runtime use-cases and costs, and the kinds of input
patterns likely to occur. This information is used to design
specific methods for analyzing the input and selecting a
data structure and tuned implementation at runtime. Being
specific to the library, these methods can be both effective
but also hard to generalize.

A library is also a natural setting in which to try to
exploit execution history with little or no user intervention.
For instance, consider the FFTW library system for auto-
tuning fast Fourier transforms [16], [17], developed inde-
pendently at around the same time as PHiPAC and ATLAS.
It had a “wisdom” feature that tracked the performance of
execution candidates and used that information to improve
timing over subsequent executions. However, this process
had the downside of introducing variable or unpredictable
execution time cost.

Many ways exist for generalizing the techniques
described above outside of a domain-specific library,
including within the compiler, runtime system, or appli-
cation. Over time, the simple code generators of early
systems have adapted ideas from compilers, producing
domain-specific compilers [18]–[20]. However, library
methods may still be preferable, at least initially, in certain
contexts, such as when selecting among candidate sparse
iterative solvers or settings when explicit reasoning about
numerical accuracy tradeoffs are necessary.

More generally, packaging autotuning within a library
has several practical benefits related to use, distribution,
and maintenance. First, applications naturally rely on
libraries, and a library API forms a natural abstraction for
isolating parts of the program that might need platform-
specific tuning. Second, if that API is already widely used,
as is the case with the BLAS, using an autotuned library
can be as simple as linking to a different implementation.
Third, an end-user developer can also rely on a library
when it is backed by a community standard, even if the
autotuned version becomes outdated or otherwise unavail-
able, reference implementations or vendor-provided alter-
natives exist.

However, packaging as a library can play out in different
ways. The widespread adoption of ATLAS was encour-
aged, at least in part, by the fact of and interest in
hardware-specific implementations of the BLAS. In the
case of FFTW, the first library-based autotuner for (FFT)
computations, it actually became a standard way to call the
fast Fourier transform (FFT), in part because there was no
standard.1

By contrast, in the domain of sparse linear algebra, the
community has arguably not converged on an API for its
core computational kernels, despite community efforts to

1For instance, Intel’s Math Kernel Library (Intel MKL) and
NVIDIA’s cuFFT adopted FFTW’s interface. Regarding an official
standard, DARPA supported an effort to develop the Vector Signal and
Image Processing Library (VSIPL) API, but that was still being actively
discussed at the time of FFTW’s release.

develop one.2 One explanation is that the basic data struc-
tures and calling sequences of sparse matrix computations
have much more variety, which has led to many candidate
libraries and APIs, but no convergence on a single one.
Furthermore, proper tuning may involve reconsidering the
choice of data structure in an input-dependent way, which
may involve a potential runtime cost to deploy a sparse
matrix autotuner that an application developer must now
consider. Consequently, despite the development of auto-
tuners for certain sparse matrix primitives [12], [13], they
typically have not been integrated into applications or
widely used sparse solver libraries.

Notably, the history of library-based autotuning is long
enough that we can look back on some of the early
systems and assess their impact. The PHiPAC, ATLAS, and
FFTW systems have received impact awards for the original
papers in their respective publication venues.3 And beyond
the ideas, the resulting software has been just as important.
ATLAS enjoys wide use and has been included as a part of
several Linux distributions. Before ATLAS, vendors charged
significant prices for their tuned libraries, which discour-
aged some independent software vendors from using the
work in their products. ATLAS removed this obstacle, a
move that had significant implications for commercial soft-
ware. Similarly, FFTW also has many users and received
a major prize for numerical software.4 Indeed, vendors
have even adopted autotuning methodologies as part of
their library-building processes. These include the Cray
Scientific Library (LibSci), Intel MKL and its more recent
library tuned for small matrices [25], and NVIDIA’s cuFFT,
which like Intel MKL adopts an FFTW-like interface.

B. Compilers and Code Generators

While libraries can encapsulate common computations
and eliminate the need for programmer involvement in
autotuning, libraries are limited in the scope of their
applicability and the contextual information that allows
composition of optimizations beyond individual library
calls. For computations for which a library is unavailable
or too limited, autotuning compilers and code generators
such as CHiLL [26], [27], Orio [28] and POET [29] can
potentially generate a collection of architecture-specific
codes from the same high-level input. Parallel code gen-
eration can include parallelization (via SIMD pragmas,
OpenMP, CUDA, etc.). Other transformations for HPC
codes, available in compilers but commonly applied during
manual tuning, include loop tiling (often called blocking by
application developers), loop unrolling, loop permutation,

2For example, the BLAS standards committee has defined an inter-
face for sparse computational kernels, but it has not been widely adopted.

3FFTW was recognized as a “Most influential PLDI paper” in
2009 [21]. PHiPAC received the “most influential paper in 25 years”
award in 2014 [22]; ATLAS received a Best Paper award from
ACM/IEEE Supercomputing (SC) in its publication year, as well as a
Test-of-Time Award in 2016 [23].

4In particular, FFTW received the Wilkinson Prize for numerical
software in 1999 [24].

PROCEEDINGS OF THE IEEE 5



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

fusion, distribution, prefetching, and software pipelining.
Data transformations may also be applied to reorganize
the data layout or copy it to other memory structures. The
decisions that must be resolved during autotuning include
which transformations to apply and in which order, as well
as adjusting values for parameters of the optimizations,
such as number of parallel threads/ranks, tile size, unroll
factor, or prefetch distance.

Historically, compiler optimization decisions have been
based on analytical models and heuristics. These decisions
are governed by a do-no-harm philosophy such that they
are not performed in cases where they may slow down
common workloads. Using autotuning, a compiler may be
far more aggressive and tailor optimization to the needs of
a specific application running on a specific target architec-
ture, and thus it is more likely to achieve the performance
of manual tuning.

To integrate autotuning into a compiler framework
requires a search space of possible implementations of
each computation. Such a search space potentially can be
generated automatically by a compiler decision algorithm,
but this is a difficult challenge for general applications
and architectures. Some success has been achieved when
specialized for a specific application or application domain
and a specific architecture or class of architectures, such
as the Nek5000 example in Section V. As another exam-
ple, Orio has been used to optimize data layouts and
generate optimized sparse linear algebra computations on
GPUs for finite-difference stencil-based solution of partial
differential equations [30], [31]. From this knowledge,
the search space of desirable optimizations can lead to a
fixed decision algorithm that fully automates the tuning
process. For other applications, however, the search space
is unknown, or automating the decision algorithm is pre-
mature until an expert programmer, compiler developer
or machine learning algorithm has figured out what the
search space should be. Therefore, it is desirable to design
autotuning compiler and code generation frameworks that
are configurable and permit description of the search space
by expert users.

The current state of the art in expressing a search space
of transformations encodes these in scripts or transfor-
mation recipes [28], [32], [33]. Tools such as POET and
Xevolver even support programmers’ expression of the
transformations to be applied [29], [34]. Users of such
systems annotate loop nest computations with possible
transformations and the set of associated parameters. From
a set of such recipes or an encoding of multiple recipes,
a large collection of code variants can be described and
searched by using the techniques described below with
regard to selection approach.

As shown in the case studies and other work, compiler-
directed autotuning can produce code that achieves per-
formance comparable to and sometimes exceeding that
of manual tuning. The strength of such an approach lies
in the ease of exploring completely different implemen-
tations that would be time-consuming for a programmer

to produce. In particular, it can optimize more of an
application than the time-consuming portion that is a
programmer’s focus, and can try more combinations of
optimizations. The future of compiler-directed autotuning
requires automating or encapsulating derivation of the
search space so that nonexperts can benefit from the
technology without having to interact with it directly.

C. Application-Level Autotuning

Autotuning may also be specified at the application
level, and many programming systems have been devel-
oped that permit expression of tunable parameters and
code variants representing alternative implementations
[27], [35]–[37]. The advantage of specifying what to
tune at this highest level of semantics is that significant
algorithmic changes can be expressed. For example, fun-
damentally different approaches to solving the problem
can be encoded for the autotuner. A solver with better
performance or convergence properties may be selected,
or a sort algorithm can be tailored to its input data set (see
Section III-D). Libraries and compilers or code generators
are unable to provide such a dramatic change to the
program.

A distinguishing characteristic of application-level auto-
tuning systems is the criteria for selecting the appropriate
code variant. Much of the prior work selects among differ-
ent implementations based on problem size. For example,
PetaBricks [35] and Sequoia [36] are designed to recur-
sively decompose algorithms to target different levels of
the memory hierarchy or parallelism, with autotuning used
to find the inflection points based on problem size for
selecting among implementations. For this purpose, offline
autotuning can be used to build a table of implementa-
tions, and runtime code variant selection then involves
a simple table lookup based on problem size. However,
suppose code variant selection is dependent on the input
data set, known only at runtime. Recent systems have
developed selection criteria for input-dependent code vari-
ant selection, where programmers express code variants
along with metainformation that aids the system in variant
section at runtime; a training phase constructs a selection
model using machine learning, and this model is consulted
at runtime when a new input is presented to make the
selection [37]–[39]. Alternatively, runtime selection can be
achieved through dynamic tuning; Active Harmony [40]
and ADAPT [41] are capable of creating, compiling, link-
ing, and testing new code variants in parallel with execu-
tion during iterative computations and replacing default
implementations when better variants are found.

Another advantage of application-level autotuning is
that it allows the use of autotuning options that can
change the output of the program. In many cases, the
accuracy of the computer simulation is limited based on
uncertainties in the underlying physical system. A domain
expert is aware of these limits and can specify tunable
parameters that can change the answer but ensure that

6 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

any such changes are within the limitations of the inherent
uncertainty of the simulation. For example, autotuning the
GS2 plasma physics code [42] involved tuning the number
of grid points and the energy grid. Both parameters can
change the answer. However, domain experts assisted in
this process to constrain the permissible range of values for
these parameters so that any changes in the answer were
acceptable. This additional freedom resulted in an extra
30% reduction in the program’s runtime compared to the
best autotuned version that only considered parameters
that left the answer the same.

However, a disadvantage of making changes at the appli-
cation level is that each application developer must specify
the autotuning. When autotuning is done within common
libraries or by the compiler, autotunable transformations
can be specified once and shared by multiple applications.

D. Frameworks and Domain-Specific Systems

An increasingly common strategy for achieving high
performance and performance portability on HPC app-
plications is using specialization of high-level code for
particular architectures and application domains. For per-
formance portability, application developers need tight
integration and the ability to adapt over time. Performance
portability frameworks such as RAJA [43] and Kokkos [44]
are becoming more popular in HPC, and they provide C++

template abstractions around application loops and data
structures. These frameworks typically abstract a loop as a
template function taking a lambda function as an argument
along with several policy template parameters to control
how the lambda is to be executed. This approach clearly
separates tuning concerns from application semantics:
application developers can write loop bodies in the code
context where they are relevant, and performance experts
can write hardware-specific code in policy implementa-
tions. Without a tool like Apollo [45], frameworks like
these are limited to static tuning decisions. Apollo allows
template instantiations to be treated as code variants and
to be compiled with the application code. In addition, it
allows code variant selection to be implemented as an
external library, so that decision models can be updated
over time. This is a useful compromise between libraries
and direct compilation, and it can be combined with online
code generation if the number of variants grows too large.

Another emerging approach that capitalizes on special-
ization performs optimizations for particular application
domains, where the optimizations that are effective are
known and autotuning is used to fine-tune optimiza-
tion decisions or retarget to different architectures. For
example, Halide, an embedded domain-specific language
(DSL) for image-processing workflows, emerged from the
research community [46] and is now in production use
by Adobe and Google. Many DSLs have been developed,
particularly for stencil computations [19], [20]. Tools for
building DSLs have also emerged [47]. In spite of this
significant progress, however, DSLs are not widely used

in HPC, for many of the adoption reasons that will be
discussed in Sections VI and VII.

IV. S E A R C H : M O D E L-F R E E , M O D E L-
B A S E D , A N D H Y B R I D S E L E C T I O N

For all the different ways that autotuning search spaces
arise, as described in the preceding section, a mechanism
is needed to evaluate some points within that search space
in order to arrive at an optimized solution. In this section,
we describe various approaches to explore the autotuning
search space.

To find good parameter configurations, some autotuners
perform complete enumeration either of all possible para-
meter configurations or of a pruned set of parameter con-
figurations obtained by exploiting expert knowledge and
architecture-specific and/or application-specific informa-
tion. Examples include application-specific autotuners such
as lattice Boltzmann computations [48], stencil computa-
tions [49], and matrix multiplication kernels [50], [51].

The main drawback of these autotuners is scalability;
as codes and architectures become more complex, the
number of tunable parameters and parameter configura-
tions grows rapidly. Consequently, the computation time
needed to enumerate all parameter configurations in a
large decision space is prohibitively expensive. Hence,
effective autotuners that examine a small subset of possible
configurations are required. Two classes of algorithm exist:
model-free and model-based algorithms.

Model-free algorithms do not use models to navigate
the search space to find high-performing configurations.
These algorithms can be grouped into global and local
search algorithms. Global algorithms are characterized by
their dynamic balance between exploration of the search
space and exploitation of the accumulated search history.
Examples include simulated annealing, genetic algorithms,
and particle swarm optimization. They are theoretically
guaranteed to find the globally best configuration at the
expense of a long search time. In practice, however, they
are run until a user-defined stopping criterion is met.
In contrast, local search algorithms do not emphasize
exploration and instead repeatedly try to move from a
current configuration to a nearby improving configuration.
Typically, the neighborhood of a given configuration is
problem-specific and defined by the user or algorithm.
These algorithms terminate when a current configuration
does not have any improving neighbor and hence is locally
optimal. The disadvantage of local search algorithms is
that, depending on the search space and initial configu-
ration, they can terminate with a locally optimal configu-
ration that performs much worse than the globally optimal
configuration. Examples include the Nelder–Mead simplex,
orthogonal search, and variable neighborhood search.

Several global and local search algorithms have been
deployed for autotuning. Seymour et al. [52] performed
an experimental comparison of several global (random
search, a genetic algorithm, simulated annealing, particle
swarm) and local (Nelder–Mead and orthogonal search)

PROCEEDINGS OF THE IEEE 7



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

Fig. 2. Illustration of model-based search. (left) At each iteration, the algorithm considers a set of evaluated configurations, (middle) fits a

surrogate model, and (right) evaluates configurations that are predicted to be high-performing by the model.

optimization algorithms. Similarly, Kisuki et al. [53] com-
pared random search, a genetic algorithm, and simu-
lated annealing with pyramid search and window search.
In both these studies, the experimental results showed
that the random search was more effective than the
other algorithms tested. The reason is that in the tuning
tasks considered, the number of high-performing para-
meter configurations is large and hence finding one of
them is easy. Moreover, in all these works the local
search algorithms are less effective since they were not
customized. Norris et al. [54] implemented the Nelder–
Mead simplex method, simulated annealing, and a genetic
algorithm in the empirical performance-tuning frame-
work Orio. A number of previous works deploy local
search algorithms for empirical performance tuning. Exam-
ples include orthogonal search in ATLAS [55], pattern
search in loop optimization [56], and a modified Nelder–
Mead simplex algorithm in Active Harmony [27], [57].
Balaprakash et al. [58] investigated the issue of global
versus local search in autotuning using illustrative global
and local algorithms under short computation times. The
results showed that the exploration capabilities of global
algorithms are less useful; given good initial configura-
tions, local search algorithms can find high-performing
code variants in short computation time. Moreover, poor
initial configurations can significantly reduce the effec-
tiveness of both global and local search algorithms that
are sensitive to the starting point. When the available
tuning time is severely limited, carefully customized local
search algorithms are promising candidates for empirical
performance tuning problems that have integer parameters
and bound constraints.

The primary goal of model-based selection algorithms in
autotuning is to avoid the cost of running code on the tar-
get machine by predicting performance metrics of a given
parameter configuration. Analytical performance models,
which use closed-form expressions for predicting perfor-
mance metrics, have enjoyed significant success in the
compiler optimization community for accelerating serial
codes. However, this approach is limited by the quality and
extrapolatory power of the analytical model, which often
fails to capture complex interactions between the code,

runtime systems, and architecture. Moreover, developing
a complex mathematical model requires a wide range of
expertise in the target system architecture, programming
models, and scientific applications. Consequently, analyt-
ical models are less well suited for highly specialized
kernels and libraries for scientific applications that require
portability, scalability, and performance. Another analytical
model-based autotuning approach involves analysis of the
source or binary code of the implementation to estimate
analytical model parameters. For example, a static analysis
tool can extract control flow information and instruction
counts from the compiled PTX code of a CUDA GPU imple-
mentation, from which one can estimate (analytically)
metrics such as occupancy, which can be used to determine
parameters such as thread counts and block sizes. While
the autotuner still must generate different code versions
that are compiled before the static analysis can be applied,
this approach greatly reduces or in many cases completely
eliminates the need for executing and timing code variants.

When analytical performance models become too
restrictive for a given scientific workload and HPC archi-
tecture, empirical performance modeling is an effective
alternative. In this approach, a small subset of parameter
configurations (code variants) is evaluated on the tar-
get machine to measure the required performance met-
rics, and a predictive model is built by using machine
learning approaches. Here, the choice of the supervised
machine learning algorithm for building the surrogate per-
formance model is crucial. Often this choice is driven by an
exploratory analysis of the relationship between the para-
meter configurations and their corresponding runtimes.
A typical model-based approach is a two-step process in
which an analytical or empirical model is built first and a
search algorithm is used to find high-performing configu-
rations using the model.

In recent years, a new class of empirical model-based
search has received considerable attention and has been
shown to be effective for autotuning. This approach con-
sists of sampling a small number of input parameter
configurations and progressively fitting a surrogate model
over the input–output space until exhausting the user-
defined maximum number of evaluations. The surrogate

8 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

model is iteratively refined in the promising input para-
meter region by obtaining new output metrics at input
configurations that are predicted to be high performing by
the model [59]–[61].

V. C A S E S T U D I E S

We describe a number of case studies from our prior
work that illustrate the current role of autotuning in HPC
applications.

A. Library Autotuning

Some libraries, such as PETSc [62]–[64], provide high-
level data structure-independent interfaces that present
an opportunity for seamless integration of new, optimized
data structures and low-level operations without having
to modify the application source code. Taking advantage
of this design, researchers developed new matrix and
vector data structures for PETSc stencil-based computa-
tions specifically targeting GPUs. Orio [30] was used to
tune all matrix-vector operations involving the new data
structure [31]. Because the matrix structure is known
a priori and does not change, it can be represented by
using a packed dense format (instead of the typical com-
pressed sparse row format), which is more storage-efficient
and eliminates the indirect memory accesses that make
sparse matrix algebra difficult to optimize. Any applica-
tion involving a finite-difference, discretization-based PDE
solution on a regular grid can take advantage of the tuned
implementations without any code modification. More-
over, because Orio generates size-specific optimizations,
the resulting library generally performs better than manu-
ally optimized libraries, which typically do not provide size
specialization. In an evaluation of a PDE application dis-
cretized by using a 3-D seven-point stencil, this approach
achieved speedups of the matrix-vector computations rang-
ing between 1.8 and 4.8 over vendor-optimized libraries
(NVIDIA Cusp).

B. Solver Selection

Numerical toolkits such as PETSc and Trilinos [65] pro-
vide a large number of parallel solution methods for large
sparse linear systems. In the Lighthouse project [66]–[68],
machine learning was used to classify solution methods
(solver-preconditioner pairs) based on a small number
(fewer than ten) of easy-to-compute linear system features.
The classifiers are built through sampling the solver space
on a large and varied training set of linear systems. At
runtime, the linear system features are used as input to the
model (classifier) to obtain a list of solver configurations
that are likely to perform well. This algorithmic autotuning
does not require application code change and is integrated
into the libraries’ existing solver interfaces.

C. End-to-End Autotuning

Another exercise demonstrated an automated, end-to-
end optimization of the SMG2000 benchmark, a semi-
coarsening multigrid on structured grids [69]. This

demonstration combined outlining using the ROSE com-
piler, transformation and code generation using CHiLL,
and search space navigation with Active Harmony. With
outlining, ROSE extracts computationally intensive loop
nests into separate executable functions with representa-
tive input data that are to be the focus of autotuning. The
outlined loop nests are then tuned by the framework and
subsequently integrated back into the application. Each
loop nest is optimized through a fixed series of composable
code transformations (permute, tile and unroll), with the
transformations parameterized by unbound optimization
parameters that are bound by Active Harmony during the
tuning process. When the full application is run using the
code variant found by the system, overall performance
improves by 27%.

D. Tuned Code Integrated Into the Application

Compiler-directed autotuning was used to optimize
Nek5000, and the compiler-generated code was integrated
into the production application [70]. Nek5000, a spec-
tral element code, spends the bulk of its computation in
matrix–matrix multiplication of small, rectangular matri-
ces. Because BLAS libraries are typically optimized for
large square matrices that exceed memory hierarchy capac-
ity, there was significant opportunity to improve perfor-
mance by specializing the generated code to the specific
matrix sizes arising in the application. The optimizations
applied focus on SIMD code generation (for Intel SSE),
register reuse, and instruction-level parallelism. Therefore,
CHiLL was used to apply loop permutation and loop
unrolling, to achieve a loop order that was best suited
for SSE, and expose register reuse and instruction-level
parallelism to the Intel ICC native compiler. The small
search space that arose was explored in a brute-force man-
ner. As presented in [70], we observed overall speedups
of up to 1.26X on the entire application running on 256
nodes of Jaguar at Oak Ridge, and the optimized code was
integrated into the production application.

Recent work expanded the scope of this optimization
of Nek5000 to the entire local_grad3 calculation that
subsumes the matrix-matrix multiplication, and targeting
an NVIDIA GPU [71]. Here, CUDA-CHiLL (a thin CUDA
layer added to CHiLL) and the SURF search algorithm
in Orio were combined, along with a tensor contraction
frontend DSL called Octopi, to fully automate the GPU
code generation. This GPU code has not been adopted by
the application developers at the time of this writing.

E. Performance and Programmer Productivity

Compiler-directed autotuning in CHiLL was used to
optimize the Locally Optimal Block Preconditioned Conju-
gate Gradient (LOBPCG) solver [72], and was shown to
outperform by 3% a manually tuned code for the same
algorithm [73]. Specifically, an important kernel within
LOBPCG is the sparse matrix multivector multiplication
(SpMM), which is a generalization of the SpMV kernel in

PROCEEDINGS OF THE IEEE 9



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

which a sparse m-by-n matrix A is multiplied by a tall and
narrow dense n-by-k matrix B (k � n). While the manually
optimized SpMM implementation was over 2000 lines of
code, the input to CHiLL was only 7 lines of code, a 300×
difference, thus improving programmer productivity. The
optimizations required in CHiLL to replicate the manually
tuned code were extensive. Using an inspector-executor
approach, a data transformation converted the large, sym-
metric sparse matrix from a compressed sparse row format
to a compressed sparse block (CSB) format. This repre-
sentation was well suited for parallelization of the matrix
and its transpose, since it permitted storing only the upper
triangular portion. A number of additional transformations
were added to CHiLL, inspired by the manually tuned code.
In order to reduce the data movement associated with
indices of the matrices, a short integer was used as the type
for the matrices that pointed to the beginning of each CSB
block. Targets for AVX SIMD code generation were marked
with pragmas for the native Intel ICC compiler. To sum-
marize, this experiment demonstrated that an autotuning
compiler could generate high-performance sparse matrix
code, but also that integration of transformations used in
manual tuning could greatly enhance the capability of such
compilers.

F. Vertically Integrated Autotuning

Fast Fourier transforms are a critical part of many par-
allel programs. FFTs require extensive communication and
have floating point requirements that necessitate careful
instruction sequences to achieve good performance. In
addition, an effective implementation requires overlapping
computation and communication. Because of the need to
optimize these parameters for different processors and the
tedious nature of properly tuning them, FFT has been a
popular library for autotuning. Performance of FFT at scale
depends on a combination of the node-level computation,
communication requirements, and the underlying commu-
nication layer implementation, typically MPI. We refer to
the use of autotuning at multiple software layers as vertical
integration.

The Active Harmony system has been used to obtain
a highly optimized FFT implementation using vertically
integrated autotuning [74]. This approach includes a
communication optimization technique called dynamic
polling intervals. In many MPI implementations, to actu-
ally overlap computation and communication, programs
must periodically call a polling routine to query whether
a nonblocking communication operation has completed.
This polling routine also must be called periodically to
ensure that the MPI implementation actually transfers
data. The frequency of polling can have a significant
impact on performance. If the polling is done too often,
it results in wasted effort. However, if it is not done fre-
quently enough, communication can stall. The optimized
FFT library allows this polling frequency to be tuned.

Overall, the autotuning approach encompasses 24 tun-
able parameters: two communication tile sizes, two

Fig. 3. Strong scaling results for OFFT and other 3-D FFT libraries.

communication window sizes, eight places where polling
intervals are specified, and eight subtile sizes. Despite the
large number of parameters (each of which have dozens
of possible values), the Active Harmony system is able to
converge to an optimal configuration after trying about
35 parameter combinations.

Fig. 3 shows the results of using the optimized library
OFFT compared with other 3-D FFT algorithms. The results
shown are for strong scaling from 128 to 32K cores on
NERSC’s Edison system. The light gray line shows the ideal
speedup. The solid black line shows the results for OFFT.
The blue line shows the time for FFTW. Since the original
FFTW supports only a 1-D data decomposition, the results
for FFTW stop at 1024 cores. The red and green lines show
the results for running using DCMP and UPCF, respectively.
The OFFT results are always faster than those of the other
implementations, and the performance advantage grows
as the number of cores is increased.

G. Fast, Data-Dependent Autotuning

In multiphysics, multimaterial models and in adaptive
mesh refinement (AMR) codes, the same kernel may be
executed on very different data structures. A time step
loop in an AMR code may iterate over thousands of
patches, each of different sizes and aspect ratios; and
multimaterial kernels may require more computation on
certain parts of a mesh and not on others. Fig. 4(a) shows
the range of runtimes for the top eight kernels in two
hydrocodes: CleverLeaf, an Eulerian AMR hydrodynam-
ics proxy application, as well as ARES, a multiphysics
Arbitrary Lagrangian-Eulerian hydrodynamics code. The
runtimes can vary by orders of magnitude depending on
the input array sizes and aspect ratios and the particular
execution model (OpenMP, sequential, GPU) used for each
kernel.

These codes use RAJA [43], a performance portability
framework developed at LLNL, which was extended with
the Apollo [45] autotuning framework. Apollo allows a
user to train a lightweight decision model using machine
learning and to use it to select an execution model based

10 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

Fig. 4. Runtime of kernels in hydrocodes can vary by orders of magnitude depending on the execution policy (CPU, GPU, OpenMP, etc.) and

input arrays. We are able to achieve considerable speedup by dynamically tuning the execution policy based on input data. (a) Runtimes of

top kernels for different execution models. (b) CleverLeaf AMR, Sedov problem. (c) ARES, hotspot problem.

on the input arrays each time control passes over a RAJA
kernel. These experiments chose between running a ker-
nel sequentially or with OpenMP. CleverLeaf running the
Sedov problem [Fig. 4(b)] achieved up to 2.5x speedup
for a run on 256 cores, with the entire code using Apollo.
ARES 4c achieved up to 15% speedup on 256 cores, with
only the Lagrange hydro phase using the autotuner. In
these examples, speedup increases for larger-scale runs;
the reason is that the domain becomes increasingly finely
decomposed with strong scaling, and with small patches
it is not worthwhile to pay the overhead of launching on-
node OpenMP parallel regions. For these highly unstruc-
tured domains, the code may iterate over thousands of
irregularly sized mesh patches in a single timestep, and
one cannot possibly know the size and correct code variant
without dynamic information.

VI. S O F T WA R E E N G I N E E R I N G
C H A L L E N G E S F O R A U T O T U N I N G

For autotuning to succeed in production, it must integrate
seamlessly into the application development process, and
one must be able to maintain autotuned parts of large
applications as the codes evolve. Indeed, the changes
demanded of the software development process are the
biggest obstacle to mainstream use of autotuning.

Because offline autotuning can involve many empirical
compilations, it typically requires a significantly longer
compilation process, and it may require execution of code
variants on the target platform. Thus it can severely impact
the speed with which a developer can iterate on the code.
Having an option to disable lengthy compiles is essential.
Perhaps more importantly, empirical autotuning burdens
developers with the task of managing the tuning process.
This can be tedious for developers, as they must now
decide how often to retune and how to manage profile
data.

Autotuners have historically complicated the build
process, even for simple codes. Designing autotuners to

leverage existing build infrastructure is ideal. For example,
Orio can be used as a compiler wrapper (together with
other wrappers such as those provided by MPI implemen-
tations) to enable a single build configuration to be used
for regular development and for autotuning. For large
codes, injecting compiler wrappers into all parts of the
build may not be straightforward but we may be able
to leverage the work already done in build-from-source
package management systems such as Spack [75]. Spack
can build over a thousand packages, and it provides a
harness around each package’s build system that injects
compiler wrappers into the build. Depending on the host
build system, Spack may set the CC variable, patch the
build, or explicitly set the compilers in the build. This could
be a useful integration point for autotuners and would
enable codes with potentially hundreds of dependency
libraries to be tuned easily.

Because the final autotuned binaries contain automati-
cally generated code, debugging can be an issue, although
the debugging of any application that uses libraries devel-
oped elsewhere is complicated by the presence of code
that may be less familiar or for which source code is
not available at all. The code generated by autotuners,
on the other hand, is likely to have fewer bugs than do
human-developed portions, and the availability of multiple
versions also enables functional equivalence verification
during autotuning.

VII. C H A L L E N G E S A N D
F U T U R E D I R E C T I O N S

To summarize the challenges for widespread adoption,
autotuning must become a standard or at least a common
part of the build process for HPC programmers. Making it
transparent to end users seems to be the most desirable
way to do this, but on the other hand autotuning is more
likely to achieve high performance with some support from
application or domain experts. Therefore, we envision a
spectrum of possible interactions with autotuning by HPC

PROCEEDINGS OF THE IEEE 11



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

Table 2 Challenges to Autotuning Adoption

programmers, from complete transparency to complete
control. Looking across this spectrum of options, Table 2
summarizes the challenges to adoption we foresee and
some possible solutions, organized into three main cat-
egories: 1) overhead concerns, which refers to compile
time, tuning time, and runtime overheads as well as
increased programming complexity; 2) scope of applicabil-
ity, which acknowledges that widespread use of autotuning
requires that its scope of applicability must be expanded to
new and dynamically changing execution contexts, learn-
ing from prior application runs; and 3) other program-
mer concerns, which we have collected from applications
communities.

Perhaps the first concern that is often raised about
autotuning is the inherent cost of searching across different
implementations and its scalability for large application
codes (line 1). Section IV addresses how improvements in
search algorithms lead to better solutions and less search
time, but the tolerance for search time may vary by user
and tuning scenario. While we improve search algorithms
and incorporate incremental tuning support as described
in the next paragraph, it is also important to offer a hard
cutoff, in terms of number of points to search or time to
spend tuning, to limit the cost of autotuning.

For users who want to maintain some control of the
autotuning process, ease of use will be advanced by
improving the mechanisms by which autotuning variants
and parameters are expressed (lines 2 and 3). Autotuning
systems must first and foremost allow programmers to
compactly describe a search space or derive it automat-
ically. When selecting among code variants using a classi-
fier, manually specifying features may also be too much of a
programming burden, potentially costly and suboptimal. It
is desirable to automate the feature collection, for example
within a common framework like Apollo’s collection of
RAJA features from Section V-G or via a domain-specific
framework. If the programmer is providing any of this
information, then tools must support the programmer in
logically mapping the vast performance or other data
arising from autotuning back to programmer abstractions
of the computation, so that the relationship between areas
of the search space and optimization is understood. This

latter capability can be used to train programmers to
understand how to establish effective autotuning search
spaces and participate in optimization.

Consider the requirements of users who may not want to
be involved in the autotuning process at all. Such users will
benefit from all the previous solutions whenever they are
fully automated. Incremental or dynamic tuning (line 4)
can hide the time spent in performing autotuning, as it is
amortized over prior runs or within a single application
run. Dynamic tuning must be sparing in how much work
is done in a run; therefore, it could greatly benefit from
prerun learning or integration with incremental tuning
that accesses the measurements from prior runs. Another
strategy for hiding the programmer burden of autotuning
is to rely on domain-specific frameworks (e.g., Halide)
that can be tuned by expert users. The effect of tuning
can benefit other users, but they can use the harnesses or
results of autotuning without directing it.

The next two challenges in the table (lines 5 and 6)
involve changes in applications, their input data and
resources, which we refer to as the context or execution
context of an application. As discussed in the preceding
section, autotuning must adapt to these changes and must
therefore be integrated into an application’s build process.
Further, an exascale platform, because of energy manage-
ment and component failure, may have varying resources
available to an application for execution. In addition,
offline tuning or training may need to be performed on
a proxy system rather than the target architecture. Both
challenges imply that autotuning decisions may need to
predict expected resources at runtime and tune accord-
ingly. Early work in predicting performance for unseen
execution contexts has relied on information from prior
tuning on source architectures that are different from the
final target architecture [76], [77]. Such models work best
when performance differences can be captured with prox-
ies; for example, if synchronization costs are the dominant
predictor for autotuning, then proxies for synchronization
can be used to predict execution-time behavior. Findings to
date, however, show that prediction is most effective when
training or offline tuning occurs on a similar architecture
or with related resources.

12 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

Building good tuning models requires exploring a
large performance search space, and a single HPC user
is unlikely to be able to train high-quality, general tuning
models with only a limited set of applications and inputs.
Users will be able to train robust performance models
only if autotuning achieves broad exposure and if the
performance of many different algorithms, inputs, and
architectures are included in the training data (line 7).
To gather such a corpus of data, we must make it easy to
monitor code performance in a wide variety of contexts
and to record this data in a way that can be shared
among HPC users to train versatile models. However,
typical HPC users do not want to be in the business of
managing voluminous performance data or of controlling
which runs are monitored and measured and which are
not. The only way we can achieve this kind of scale is
with help from the HPC facilities–who have visibility
across the entire workload of their HPC centers and can
deploy tools to measure a wide range of applications.
This is a difficult task that requires not only technical
work but also work to secure the performance data from
potentially sensitive codes. Ideally, users could use simple,
transparent interfaces to measure their production codes
and to provide performance data securely to HPC facilities
at runtime. Performance data management for autotuners
should not require developers to manually manage any
historical tuning data or model outputs.

Autotuning can alleviate the burden of finding a high-
performance code variant, but application developers must
trust that the optimized version of the code produces
equivalent results, particularly if tuning is performed
dynamically (line 8). The outputs need not match iden-
tically in order to be functionally equivalent, particularly
in the presence of reordering operations like reductions.
A number of ways exist for verifying functional equivalence
of the tuned code. The most common simple approach is
to compare output from some trusted version, with some
specified tolerance for differences in results. A preferred
solution may be to exploit domain knowledge of the algo-
rithms to verify output. For example, LAPACK provides
comprehensive error bounds for most computed quantities.
It includes a table for various routines that describes the
bound so a user can determine how accurate the computed
solution is for a given problem. If autotuning was involved,
the resulting software could be checked according to the
same criteria. Other features of the output or execution
could be used as a proxy for verification, such as number
of iterations to convergence, or sensitivity to input pertur-
bations. A more comprehensive approach could use code
synthesis and formal correctness proofs to automatically
generate complicated members of the design space, but
this may be substantially more costly.

The final line reflects a common concern among HPC
developers that impedes adoption of new technology.
HPC applications have long lifetimes, sometimes span-
ning decades. In contrast, new technology goes through
a lengthy process of exploring appropriate approaches

before it gains traction. Many tools simply do not reach a
level of maturity to support production applications. Other
tools may no longer be supported once a funded project
ends. Therefore, to adopt new technology, HPC developers
must be convinced that technology will be available for
the lifetime of the application. The only obvious solution
to this problem is to integrate the technology into trusted
and widely used open source software.

VIII. S U M M A R Y

Autotuning is a proven technology to achieve high per-
formance and performance portability. In this paper, we
have presented examples where autotuning tools have
facilitated high-performance implementations. Program-
mer productivity is also enhanced when tools can simplify
the code the programmer writes and eliminate the need for
manually writing low-level architecture-specific implemen-
tations. As new and diverse architecture features continue
to appear in exascale architectures and beyond, the need
for approaches that improve performance portability and
programmer productivity will grow stronger. We believe
that autotuning is a powerful and appropriate technology
for addressing this need.

The goal of this paper was twofold: to describe the state
of the art in autotuning and to present future requirements
to move autotuning toward mainstream use in HPC. We
believe that many of the challenges in gaining widespread
deployment of autotuning relate to ease of use (including
overhead), predictability, and a reimagining of its integra-
tion into the application build process. We have seen other
fundamental changes to application development in HPC
succeed or fail based on these issues.

Looking to future architectures and applications, we
believe that the size of the space of desirable code
variants for autotuning likely will grow substantially as
architectures change and software adapts in response.
Today’s applications are currently undergoing rewrites and
other adaptations to target emerging many-core, GPU,
and heterogeneous architectures. New ways of organizing
algorithms, new data structures, and even fundamen-
tally new algorithms with different numerical conver-
gence and stability properties are appearing. Indeed, a
new theory of communication-avoiding algorithms shows
how to construct algorithms that do asymptotically less
data movement, which are more efficient on current
architectures where communication costs are increasingly
dominant.

Beyond HPC, autotuning technology is highly rele-
vant for some emerging computation-intensive work-
loads, such as deep learning and data analytics. In order
to improve the single-node performance, deep learning
requires highly optimized kernels for key computational
operations. These include sparse matrix–vector, matrix–
transpose–vector, matrix–vector–transpose, and matrix–
matrix products. As the set of possible algorithms and
implementations continues to grow, tools for more easily
generating members of this set become important.

PROCEEDINGS OF THE IEEE 13



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

R E F E R E N C E S
[1] J. K. Hollingsworth, B. P. Miller, and J. Cargille,

“Dynamic program instrumentation for scalable
performance tools,” in Proc. Scalable High-Perform.
Comput. Conf., May 1994, pp. 841–850.

[2] D. Boehme, “Caliper: Performance introspection for
HPC software stacks,” in Proc. Supercomputing
(SC), Salt Lake City, UT, USA, Nov. 2016,
pp. 550–560.

[3] K. A. Huck, A. D. Malony, R. Bell, and A. Morris,
“Design and implementation of a parallel
performance data management framework,” in
Proc. Int. Conf. Parallel Process. (ICPP), Jun. 2005,
pp. 473–482.

[4] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and
F. T. Krogh, “Basic linear algebra subprograms for
Fortran usage,” ACM Trans. Math. Softw., vol. 5,
no. 3, pp. 308–323, Sep. 1979.

[5] J. Dongarra, J. Du Croz, I. Duff, and
S. Hammarling, “A set of level 3 basic linear algebra
subprograms,” ACM Trans. Math. Softw., vol. 16,
no. 1, pp. 1–17, Mar. 1990.

[6] J. Bilmes, K. Asanović, C. W. Chin, and J. Demmel,
“Optimizing matrix multiply using PHiPAC: A
portable, high-performance, ANSI C coding
methodology,” in Proc. Int. Conf. Supercomput.,
Vienna, Austria, Jul. 1997, pp. 253–260.

[7] R. C. Whaley and J. J. Dongarra, “Automatically
tuned linear algebra software,” in Proc. ACM/IEEE
Conf. Supercomput. (SC), 1998, pp. 1–27.

[8] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning
GEMM kernels for the Fermi GPU,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 11,
pp. 2045–2057, Nov. 2012.

[9] M. Püschel, “SPIRAL: Code generation for DSP
transforms,” Proc. IEEE, vol. 93, no. 2, pp. 232–275,
Feb. 2005.

[10] V. Eijkhout, P. Bientinesi, and R. van de Geijn,
“Proof-driven derivation of Krylov solver libraries,”
Texas Adv. Comput. Center, Univ. Texas Austin,
Austin, TX, USA, Tech. Rep. TR-10-02, 2010.

[11] D. Fabregat-Traver and P. Bientinesi,
“Application-tailored linear algebra algorithms: A
search-based approach,” Int. J. High Perform.
Comput. Appl., vol. 27, no. 4, pp. 425–438,
Nov. 2013.

[12] E.-J. Im and K. A. Yelick, “Optimizing sparse matrix
vector multiplication on SMPs,” in Proc. SIAM Conf.
Parallel Process. Sci. Comput., San Antonio, TX,
USA, Mar. 1999, pp. 1–9.

[13] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A
library of automatically tuned sparse matrix
kernels,” J. Phys., Conf. Ser., vol. 16, no. 16,
pp. 521–530, 2005.

[14] P. Sao, X. Liu, R. Vuduc, and X. Li, “A sparse direct
solver for distributed memory Xeon phi-accelerated
systems,” in Proc. Int. Parallel Distrib. Process. Symp.
(IPDPS), Hyderabad, India, May 2015, pp. 71–81.

[15] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc,
“Model-driven sparse CP decomposition for
higher-order tensors,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp. (IPDPS), May/Jun. 2017,
pp. 1048–1057.

[16] M. Frigo and S. G. Johnson, “FFTW: An adaptive
software architecture for the FFT,” in Proc. Int. Conf.
Acoust., Speech, Signal Process., vol. 3, May 1998,
pp. 1381–1384.

[17] M. Frigo and S. G. Johnson, “The design and
implementation of FFTW3,” Proc. IEEE, vol. 93,
no. 2, pp. 216–231, Feb. 2005.

[18] G. Baumgartner, “Synthesis of high-performance
parallel programs for a class of ab initio quantum
chemistry models,” Proc. IEEE, vol. 93, no. 2,
pp. 276–292, Feb. 2005.

[19] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul,
C.-K. Luk, and C. E. Leiserson, “The pochoir stencil
compiler,” in Proc. Symp. Parallel Algorithms
Architect. (SPAA), Jun. 2011, pp. 117–128.

[20] M. Christen, O. Schenk, and H. Burkhart, “PATUS:
A code generation and autotuning framework for
parallel iterative stencil computations on modern
microarchitectures,” in Proc. IEEE Parallel Distrib.
Process. Symp. (IPDPS), Anchorage, AK, USA, May
2011, pp. 676–687.

[21] M. Frigo, “A fast Fourier transform compiler,” in
Proc. ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, May 1999, vol. 34, no. 5,
pp. 169–180.

[22] J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel,
“Author retrospective for optimizing matrix
multiply using PHiPAC: A portable
high-performance ANSI C coding methodology,” in
Proc. 25th Anniversary Volume Int. Conf.
Supercomput. (ICS), 2014, pp. 42–44.

[23] R. C. Whaley and J. Dongarra (2016). SC16 Test of
Time Award Winner: Official Citation. [Online].
Available:
http://sc16.supercomputing.org/conference-
components/awards/test-time-award-page/

[24] M. Frigo and S. G. Johnson (1999). J. H. Wilkinson
Prize for Numerical Software: Official List of
Winners. [Online]. Available:
http://www.anl.gov/mcs/about-us/j-h-wilkinson-
prize-numerical-software

[25] A. Heinecke, G. Henry, M. Hutchinson, and
H. Pabst, “LIBXSMM: Accelerating small matrix
multiplications by runtime code generation,” in
Proc. ACM/IEEE Int. Conf. High-Perform. Comput.
Netw., Storage Anal., Nov. 2016, pp. 981–991.

[26] C. Chen, “Model-guided empirical optimization for
memory hierarchy,” Ph.D. dissertation, Univ.
Southern California, Los Angeles, CA, USA, 2007.

[27] A. Tiwari, C. Chen, C. Jacqueline, M. Hall, and
J. K. Hollingsworth, “A scalable auto-tuning
framework for compiler optimization,” in Proc. IEEE
Int. Symp. Parallel Distrib. Process., Washington,
DC, USA, May 2009, pp. 1–12.

[28] A. Hartono, B. Norris, and P. Sadayappan,
“Annotation-based empirical performance tuning
using Orio,” in Proc. IPDPS, May 2009, pp. 1–11.

[29] Q. Yi, K. Seymour, H. You, R. Vuduc, and
D. Quinlan, “POET: Parameterized optimizations
for empirical tuning,” in Proc. IPDPS, Long Beach,
CA, USA, Mar. 2007, pp. 1–8.

[30] A. Mametjanov, D. Lowell, C.-C. Ma, and B. Norris,
“Autotuning stencil-based computations on GPUs,”
in Proc. IEEE Cluster, Sep. 2012, pp. 266–274.

[31] C. Choudary, “Stencil-aware GPU optimization of
iterative solvers,” SIAM J. Sci. Comput., vol. 35,
no. 5, pp. S209–S228, Oct. 2013.

[32] S. Donadio, “A language for the compact
representation of multiple program versions,” in
Proc. Workshop Lang. Compilers Parallel Comput.
(LCPC), Oct. 2005, pp. 136–151.

[33] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and
M. M. Khan, “Loop transformation recipes for code
generation and auto-tuning,” in Proc. 22nd Int.
Workshop Lang. Compilers Parallel Comput.,
Oct. 2009, pp. 50–64.

[34] H. Takizawa, S. Hirasawa, Y. Hayashi, R. Egawa,
and H. Kobayashi, “Xevolver: An XML-based code
translation framework for supporting HPC
application migration,” in Proc. 21st Int. Conf. High
Perform. Comput. (HiPC), Dec. 2014, pp. 1–11.

[35] J. Ansel, “PetaBricks: A language and compiler for
algorithmic choice,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Des. Implement. (PLDI). New York,
NY, USA: ACM, 2009, pp. 38–49.

[36] M. Ren, J. Y. Park, M. Houston, A. Aiken, and
W. J. Dally, “A tuning framework for
software-managed memory hierarchies,” in Proc.
Int. Conf. Parallel Archit. Compilation Techn.,
Oct. 2008, pp. 280–291.

[37] S. Muralidharan, M. Shantharam, M. Hall,
M. Garland, and B. Catanzaro, “Nitro: A framework
for adaptive code variant tuning,” in Proc. IEEE
28th Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2014, pp. 501–512.

[38] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen,
U.-M. O’Reilly, and S. Amarasinghe, “Autotuning
algorithmic choice for input sensitivity,” in Proc.
36th ACM SIGPLAN Conf. Program. Lang. Des.
Implement. (PLDI), 2015, pp. 379–390.

[39] R. Nair, S.-L. Bernstein, E. Jessup, and B. Norris,
“Generating customized sparse eigenvalue
solutions with Lighthouse,” in Proc. 9th Int.
Multi-Conf. Comput. Global Inf. Technol., Seville,

Spain, Jun. 2014, pp. 1–4.
[40] A. Tiwari and J. K. Hollingsworth, “Online adaptive

code generation and tuning,” in Proc. Int. Conf.
Parallel Distrib. Process. Syst., May 2011,
pp. 879–892.

[41] M. J. Voss and R. Eigemann, “High-level adaptive
program optimization with ADAPT,” in Proc. ACM
Principles Pract. Parallel Program., Jun. 2001,
pp. 93–102.

[42] I.-H. Chung and J. K. Hollingsworth, “A case study
using automatic performance tuning for large-scale
scientific programs,” in Proc. 15th IEEE Int. Conf.
High Perform. Distrib. Comput., Jun. 2006,
pp. 45–56.

[43] R. D. Hornung and J. A. Keasler, “The RAJA
portability layer: Overview and status,” Lawrence
Livermore Nat. Lab., Livermore, CA, USA, Tech.
Rep. LLNL-TR-661403, Sep. 2014.

[44] H. C. Edwards, C. Trott, and D. Sunderland,
“Kokkos: A manycore device performance
portability library for C++ HPC applications,” in
Proc. Workshop Program. Abstractions Data Locality.
Livermore, CA, USA: Sandia National Laboratories,
Mar. 2014, pp. 1–37.

[45] D. Beckingsale, O. Pearce, I. Laguna, and
T. Gamblin, “Apollo: Fast, dynamic tuning for
data-dependent code,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp. (IPDPS), Orlando, FL, USA,
May/Jun. 2017.

[46] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. Amarasinghe, “Halide: A
language and compiler for optimizing parallelism,
locality, and recomputation in image processing
pipelines,” in Proc. 34th ACM SIGPLAN Conf.
Program. Lang. Des. Implement. (PLDI), 2013,
pp. 519–530.

[47] K. J. Brown, “A heterogeneous parallel framework
for domain-specific languages,” in Proc. Int. Conf.
Parallel Archit. Compilation Techn., Oct. 2011,
pp. 89–100.

[48] S. Williams, J. Carter, L. Oliker, J. Shalf, and
K. Yelick, “Optimization of a lattice Boltzmann
computation on state-of-the-art multicore
platforms,” J. Parallel Distrib. Comput., vol. 69,
no. 9, pp. 762–777, Sep. 2009.

[49] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf,
and K. Yelick, “Optimization and performance
modeling of stencil computations on modern
microprocessors,” SIAM Rev., vol. 51, no. 1,
pp. 129–159, 2009.

[50] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel, “Optimization of sparse
matrix–vector multiplication on emerging
multicore platforms,” Parallel Comput., vol. 35,
no. 3, pp. 178–194, Mar. 2009.

[51] J. Shin, M. W. Hall, J. Chame, C. Chen, and
P. D. Hovland, “Autotuning and specialization:
Speeding up matrix multiply for small matrices
with compiler technology,” in Proc. 4th Int.
Workshop Autom. Perform. Tuning, Japan, 2009,
pp. 353–370.

[52] K. Seymour, H. You, and J. Dongarra, “A
comparison of search heuristics for empirical code
optimization,” in Proc. IEEE Int. Conf. Cluster
Comput., Sep./Oct. 2008, pp. 421–429.

[53] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle,
“Combined selection of tile sizes and unroll factors
using iterative compilation,” in Proc. Int. Conf.
Parallel Archit. Compilation Techn., Washington,
DC, USA, Oct. 2000, pp. 237–246.

[54] B. Norris, A. Hartono, and W. Gropp, Annotations
for Productivity and Performance Portability
(Computational Science). Boca Raton, FL, USA:
CRC, 2007, pp. 443–461.

[55] R. C. Whaley and J. J. Dongarra, “Automatically
tuned linear algebra software,” in Proc. ACM/IEEE
Conf. Supercomput. (SC), Washington, DC, USA,
Nov. 1998, pp. 1–27.

[56] A. Qasem, K. Kennedy, and J. Mellor-Crummey,
“Automatic tuning of whole applications using
direct search and a performance-based
transformation system,” J. Supercomput., vol. 36,
no. 2, pp. 183–196, May 2006.

14 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

[57] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth,
“Parallel parameter tuning for applications with
performance variability,” in Proc. ACM/IEEE Conf.
Supercomput. (SC), Washington, DC, USA, 2005,
p. 57.

[58] P. Balaprakash, S. M. Wild, and P. D. Hovland, “An
experimental study of global and local search
algorithms in empirical performance tuning,” in
Proc. 10th Int. Conf. Revised Sel. Papers High
Perform. Comput. Comput. Sci. (VECPAR). Springer,
2013, pp. 261–269.

[59] T. Nelson, “Generating efficient tensor contractions
for GPUs,” in Proc. 44th Int. Conf. Parallel Process.
(ICPP), Sep. 2015, pp. 969–978.

[60] P. Balaprakash, S. M. Wild, and P. D. Hovland, “Can
search algorithms save large-scale automatic
performance tuning?” in Proc. Int. Conf. Comput.
Sci. (ICCS), vol. 4, 2011, pp. 2136–2145.

[61] J. Bergstra, N. Pinto, and D. Cox, “Machine
learning for predictive auto-tuning with boosted
regression trees,” in Proc. Innov. Parallel Comput.
(InPar), May 2012, pp. 1–9.

[62] S. Balay, W. D. Gropp, L. C. McInnes, and
B. F. Smith, “Efficient management of parallelism in
object-oriented numerical software libraries,” in
Modern Software Tools for Scientific Computing,
E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds.
Cambridge, MA, USA: Birkhäuser, 1997,
pp. 163–202.

[63] S. Balay (2015). PETSc Web Page. [Online].

Available: http://www.mcs.anl.gov/petsc
[64] S. Balay, “PETSc users manual,” Argonne Nat. Lab.,

Lemont, IL, USA, Tech. Rep. ANL-95/11, 2015.
[Online]. Available: http://www.mcs.anl.gov/petsc

[65] M. A. Heroux, “An overview of the Trilinos project,”
ACM Trans. Math. Softw., vol. 31, no. 3,
pp. 397–423, Sep. 2005.

[66] K. Sood, B. Norris, and E. Jessup, “Lighthouse: A
taxonomy-based solver selection tool,” in Proc. 2nd
Workshop Softw. Eng. Parallel Syst. (SEPS),
Pittsburgh, PA, USA, Oct. 2015, pp. 66–70.

[67] P. Motter, K. Sood, E. Jessup, and B. Norris,
“Lighthouse: An automated solver selection tool,”
in Proc. 3rd Int. Workshop Softw. Eng. High Perform.
Comput. Comput. Sci. Eng. (SEHPCCSE), Austin, TX,
USA, Nov. 2015, pp. 16–24.

[68] E. Jessup, P. Motter, B. Norris, and K. Sood,
“Performance-based numerical solver selection in
the Lighthouse framework,” SIAM J. Sci. Comput.,
vol. 38, no. 5, pp. S750–S771, 2016.

[69] A. Tiwari, “Auto-tuning full applications: A case
study,” Int. J. High Perform. Comput. Appl., vol. 25,
no. 3, pp. 286–294, Aug. 2011.

[70] J. Shin, M. W. Hall, J. Chame, C. Chen, P. F. Fischer,
and P. D. Hovland, “Speeding up Nek5000 with
autotuning and specialization,” in Proc. 24th ACM
Int. Conf. Supercomput. (ICS), 2010, pp. 253–262.

[71] T. Nelson, “Generating efficient tensor contractions
for GPUs,” in Proc. 44th Int. Conf. Parallel Process.,
Sep. 2015, pp. 969–978.

[72] K. Ahmad, A. Venkat, and M. Hall, “Optimizing
LOBPCG: Sparse matrix loop and data
transformations in action,” in Proc. 29th Int.
Workshop Lang. Compilers Parallel Comput.,
C. Ding, J. Criswell, and P. Wu, Eds.
Springer-Verlag, 2016, pp. 218–231.

[73] H. M. Aktulga, A. Buluc, S. Williams, and C. Yang,
“Optimizing sparse matrix-multiple vectors
multiplication for nuclear configuration interaction
calculations,” in Proc. IEEE 28th Int. Parallel Distrib.
Process. Symp., May 2014, pp. 1213–1222.

[74] S. Song and J. K. Hollingsworth,
“Computation–communication overlap and
parameter auto-tuning for scalable parallel 3-D
FFT,” J. Comput. Sci., vol. 14, pp. 38–50,
May 2016.

[75] T. Gamblin, “The Spack package manager: Bringing
order to HPC software chaos,” in Proc.
Supercomput. (SC), Austin, TX, USA, Nov. 2015,
pp. 1–12. [Online]. Available:
http://tgamblin.github.io/pubs/spack-sc15.pdf

[76] A. Roy, P. Balaprakash, P. D. Hovland, and
S. M. Wild, “Exploiting performance portability in
search algorithms for autotuning,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshops,
May 2016, pp. 1535–1544.

[77] S. Muralidharan, A. Roy, M. Hall, M. Garland, and
P. Rai, “Architecture-adaptive code variant tuning,”
in Proc. 21st Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS), 2016, pp. 325–338.

A B O U T T H E A U T H O R S

Prasanna Balaprakash received the B.S.
degree in computer science engineering
from the Periyar University, Salem, India,
the M.S. degree in computer science from
the Otto-von-Guericke University, Magde-
burg, Germany, and the Ph.D. degree in
engineering sciences from CoDE-IRIDIA (AI
Lab), Université libre de Bruxelles, Brussels,
Belgium.
He was a Marie Curie Fellow and later an FNRS Aspirant at AI Lab.

Currently, he is a Computer Scientist with a joint appointment in
the Mathematics and Computer Science Division and the Leader-
ship Computing Facility, Argonne National Laboratory. His research
interests span the areas of artificial intelligence, machine learn-
ing, optimization, and high-performance computing. Currently, his
research focus is on the automated design and development of
scalable algorithms for solving large-scale problems that arise in
scientific data analysis and in automating application performance
modeling and tuning.

Jack Dongarra (Fellow, IEEE) holds an
appointment at the University of Tennessee,
Oak Ridge National Laboratory, and the
University of Manchester. He specializes in
numerical algorithms in linear algebra, par-
allel computing, use of advanced-computer
architectures, programming methodology,
and tools for parallel computers.
Dr. Dongarra was awarded the IEEE Sid

Fernbach Award in 2004. In 2008, he was the recipient of the
first IEEE Medal of Excellence in Scalable Computing; in 2010,
he was the first recipient of the SIAM Special Interest Group on
Supercomputing’s award for Career Achievement. In 2011, he was
the recipient of the IEEE Charles Babbage Award, and in 2013 he
received the ACM/IEEE Ken Kennedy Award. He is a Fellow of the
AAAS, ACM, IEEE, and SIAM and a foreign member of the Russian
Academy of Science and a member of the U.S. National Academy
of Engineering.

Todd Gamblin (Member, IEEE) received
the B.A. degrees in computer science and
Japanese from Williams College, in 2002,
and the M.S. and Ph.D. degrees in computer
science from the University of North Car-
olina, Chapel Hill, in 2005 and 2009, respec-
tively.
He is a Computer Scientist in the Center

for Applied Scientific Computing, Lawrence
Livermore National Laboratory, where he has been since 2008.
His research focuses on scalable tools for measuring, analyzing,
and visualizing parallel performance data. He is also the creator
of Spack, a popular HPC package management tool.

Mary Hall (Senior Member, IEEE) received
the B.A., M.S., and Ph.D. degrees in
computer science, all from Rice Univer-
sity.
Currently, she is a Professor in the School

of Computing at the University of Utah. Her
research focuses on compiler technology for
exploiting performance-enhancing features
of a variety of computer architectures:
automatic parallelization for multicores and GPUs, superword-
level parallelism, processing-in-memory architectures, and
FPGAs.

PROCEEDINGS OF THE IEEE 15



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Balaprakash et al.: Autotuning in High-Performance Computing Applications

Jeffrey K. Hollingsworth (Senior Member,
IEEE) received the B.S. degree in electrical
engineering from the University of Califor-
nia, Berkeley, CA, USA, and the M.S. and
Ph.D. degrees in computer sciences from the
University of Wisconsin.
He is currently serving as Interm Chief

Information Officer of the University of Mary-
land. He is a Professor in the Computer
Science Department, University of Maryland, College Park. In his
research, he seeks to develop a unified framework to understand
the performance of large systems and focuses on performance
measurement and autotuning. He was Editor-in-Chief of the journal
Parallel Computing, was general chair of the SC12 Conference, and
is Chair of ACM SIGHPC.

Boyana Norris received the B.S. degree
from Wake Forest University and the Ph.D.
degree from the University of Illinois at
Urbana-Champaign, both in computer sci-
ence.
She is an Associate Professor in the Com-

puter and Information Science Department
at the University of Oregon. Her research
in high-performance computing focuses on
methodologies and tools for performance reasoning and automated
optimization of scientific applications, while ensuring continued or
better usability of HPC tools and libraries and improving developer
productivity.

Richard Vuduc (Member, IEEE) received
the B.S. degree in computer science from
Cornell University, Ithaca, NY, USA, and
the Ph.D. degree in computer science from
the University of California, Berkeley, CA,
USA.
He is an Associate Professor in the School

of Computational Science and Engineering,
Georgia Institute of Technology, Atlanta, GA,
USA. His research lab, The HPC Garage (@hpcgarage), is interested
in high-performance computing, with an emphasis on algorithms,
performance analysis, and performance engineering. From 2014 to
2016, he served as an Associate Editor for the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS.

16 PROCEEDINGS OF THE IEEE


