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Abstract—In recent years, the use of graphics chips has been recognized as a viable way of accelerating scientific and engineering

applications, even more so since the introduction of the Fermi architecture by NVIDIA, with features essential to numerical computing,

such as fast double precision arithmetic and memory protected with error correction codes. Being the crucial component of numerical

software packages, such as LAPACK and ScaLAPACK, the general dense matrix multiplication routine is one of the more important

workloads to be implemented on these devices. This paper presents a methodology for producing matrix multiplication kernels tuned

for a specific architecture, through a canonical process of heuristic autotuning, based on generation of multiple code variants and

selecting the fastest ones through benchmarking. The key contribution of this work is in the method for generating the search space;

specifically, pruning it to a manageable size. Performance numbers match or exceed other available implementations.

Index Terms—Graphics processing unit, matrix multiplication, code generation, automatic tuning, GEMM, BLAS, CUDA
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1 INTRODUCTION

GRAPHICS Processing Units (GPUs) maintain a strong lead
over more traditional multicore CPUs in peak floating-

point performance and memory bandwidth [31], which also
translates to higher power efficiency. Hybrid accelerator-
based systems have also been identified as likely candidates
to deliver Exascale performance in the future [12], [22], [39].
Today, many key scientific and engineering applications
rely on GPUs to deliver performance in excess of what
standard multicores are capable of providing [24]. Due to its
computational intensity and algorithmic regularity, dense
linear algebra is a perfect candidate for GPU acceleration,
and matrix multiplication is the canonical GPU program-
ming example [31].

The hardware target of this paper is the NVIDIA Fermi

GPU (GF100 architecture) GPUs [33], [35], [32], the first line

of GPUs with essential high-performance computing

features, such as high performance in double precision

arithmetic and memory with Error Correction Code (ECC)

protection. This device is usually programmed with

NVIDIA’s Compute Unified Device Architecture (CUDA)

[31]. The OpenCL standard [21] could be used as an

alternative, but currently its available implementations are

known to lag behind CUDA in performance [14].
The workload implemented here is general matrix

multiplication, referred to as GEMM, following the Basic

Linear Algebra Subroutines (BLAS) standard [6]. The GEMM

routine is a building block of software packages such as

LAPACK [3] and ScaLAPACK [8], absolutely essential to

their performance, and can also be used as the basis for

implementing all other Level-3 BLAS routines [20].

Not without significance is the fact that GEMM is also
critical to the performance of the High Performance Linpack
Benchmark (HPL) [13], used to rate the systems on the
Top500 list of the fastest (disclosed) computers in the world.
In June 2011, the top spot was captured by the Tianhe-1A
supercomputer in China, a hybrid system based on Intel
Xeon processors and NVIDIA Fermi GPUs. However, in
November 2011, the Tianhe-1A supercomputer was pushed
to the second place by the K computer in Japan, which does
not use GPUs.

This work addresses the development of BLAS-compli-
ant GEMM, with support for all parameters specified by the
standard. Different variants of GEMM, with respect to the
floating-point precision (single/double) and the type of
arithmetic (real/complex), are referred to by their BLAS
names (SGEMM, DGEMM, CGEMM, ZGEMM). Column-
major matrix layout is used here, following the “legacy”
BLAS interface and the convention of LAPACK and
ScaLAPACK.

The software is being developed as a component of the
Matrix Algebra for GPUs and Multicore Architectures (MAG-
MA) project [2]. It is the authors’ intention to use it as an
initial proof-of-concept prototype for a framework, Auto-
matic Stencil TuneR for Accelerators (ASTRA).

2 CUDA BASICS

In November 2006, NVIDIA introduced the Compute Unified
Device Architecture, a general purpose parallel computing
architecture, with a new parallel programming model and
instruction set architecture, that leverages the parallel
compute engine in NVIDIA GPUs to solve complex
computational problems.

At its core are three key abstractions: a hierarchy of
thread groups, shared memories, and barrier synchroniza-
tion, which are exposed to the programmer as a set of
language extensions. They guide the programmer to
partition the problem into coarse subproblems that can be
solved independently in parallel by blocks of threads, and
each subproblem into finer pieces that can be solved
cooperatively in parallel by all threads within the block.
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CUDA C extends C by allowing the programmer to define
C functions, called kernels, that, when called, are executed
N times in parallel by N different CUDA threads.

The CUDA architecture is built around a scalable array of
multithreaded Streaming Multiprocessors (SMs). When a
CUDA program on the host CPU invokes a kernel grid, the
blocks of the grid are enumerated and distributed to multi-
processors with available execution capacity. The threads of a
thread block execute concurrently on one multiprocessor,
and multiple thread blocks can execute concurrently on one
multiprocessor. As thread blocks terminate, new blocks are
launched on the vacated multiprocessors.

A multiprocessor is designed to execute hundreds of
threads concurrently. To manage such a large amount of
threads, it employs a unique architecture called Single-
Instruction, Multiple-Thread (SIMT). The instructions are
pipelined to leverage instruction-level parallelism within a
single thread, as well as thread-level parallelism extensively
with simultaneous hardware multithreading. However,
unlike CPU cores, they are issued in order and there is no
branch prediction and no speculative execution.

The multiprocessor creates, manages, schedules, and
executes threads in groups of 32 parallel threads called warps.
Individual threads composing a warp start together at the
same program address, but they have their own instruction
address counter and register state and are therefore free
to branch and execute independently. The term warp
originates from weaving, the first parallel thread technology.
When a multiprocessor is given one or more thread blocks to
execute, it partitions them into warps that get scheduled by a
warp scheduler for execution.

3 MOTIVATION

Initially, this work was motivated by the observation that,
while CUBLAS and MAGMA single precision GEMM
achieved much higher performance in complex arithmetic
than in real arithmetic, double precision did not. The higher
performance was due to the higher computational intensity
of complex arithmetic and should have manifested itself
equally in both single precision and double precision. Since
this was not the case, a clear performance improvement
opportunity presented itself. At the same time, there are
important applications where complex double precision
GEMM is essential [5].

The main motivation for this work, however, was the
delivery of optimized GEMM GPU kernels, produced
automatically through a robust process of code generation
and autotuning. Until now, the GEMM kernels in MAGMA
were produced through exhaustive experimentation, rather
than a systematic autotuning process. With the new Kepler
and Maxwell architectures planned for 2011 and 2013,
respectively, as disclosed in NVIDIA’s roadmap, a much
more sustainable process is in high demand.

It is of significance that the high-level abstraction of CUDA
maps very well to the hardware architectures of NVIDIA
GPUs. Programmers do not have to resort to lower level
abstractions, such as the Parallel Thread Execution (PTX) [34]
(the pseudoassembly of CUDA), for the development of fast
GEMM kernels for NVIDIA cards. At the same time, CUDA
GEMM codes proved not to be “performance-portable,” as

was shown by efforts of porting kernels for the GT200 (Tesla)
architecture to the GF100 (Fermi) architecture. This combina-
tion of factors makes NVIDIA GPUs attractive targets for
autotuning efforts.

Autotuning is an attractive option for GPU code
development. First of all, many important architectural
details are proprietary knowledge, undisclosed to the
public, such as the mechanism for scheduling of blocks
within the device and scheduling of warps within the
multiprocessor. Second, low-level programming constructs
are inaccessible, i.e., there is no publicly available assembler
for NVIDIA GPUs. The lowest accessible level is the one of
PTX. Yet the strongest motivation for autotuning on GPUs
is probably the complexity of these massively parallel,
massively hardware-multithreaded devices.

For conventional architectures it has been shown that
hand-tuning has the capability to outperform autotuning
[17], [23], and also, tuning parameters can be determined
analytically [44], [23]. Nonetheless, autotuned libraries are
in wide use due to their ability to quickly adapt to new
platforms. The autotuning approach presented here is
envisioned to have similar benefits as new generations of
GPUs are developed.

4 RELATED WORK

The list of prominent autotuning software projects includes:
Automatically Tuned Linear Algebra Software (ATLAS) [43],
and its predecessor Portable High Performance ANSI C
(PHiPAC) [7], Optimized Sparse Kernel Interface (OSKI) [42],
Fastest Fourier Transform in the West (FFTW) [16], and
SPIRAL [37] (code generation for digital signal processing
transforms). All these projects address autotuning for
standard processors (not accelerators).

Jiang and Snir [19] developed an ATLAS-like autotuning
system for matrix multiplication on Nvidia GPUs before
CUDA was available. As such, pre-CUDA efforts are often
referred to as General Purpose GPU (GPGPU) programming.
The BrookGPU language was used to express a parameter-
ized kernel with 458,752 possible instantiations. The authors
used ad hoc pruning based on arbitrary problem-specific
choices, and exploited orthogonality of parameters during
the actual search.

Barrachina et al. [4] carried out a preliminary study of
Level 3 CUDA BLAS (CUBLAS) using the GeForce 8800 Ultra
card (G80 architecture). Performance of SGEMM, SSYRK,
and STRSM routines was reported. Subsequently, three
optimization techniques were applied, which did not involve
any modifications to the CUDA source code: padding of
input matrices, implementation of SSYRK, and STRSM on
top of SGEMM, and splitting the work between the GPU and
a CPU. Altogether, the application of these techniques
produced substantial performance improvements with
minimal programming effort and no coding in CUDA.

Early work on tuning GEMMs in CUDA for NVIDIA
GPUs targeted the previous generation of GPUs, of the
GT200 architecture, such as the popular GTX 280. Pioneer-
ing work was done by Volkov and Demmel [41]. Similar
efforts followed in the MAGMA project [25]. The introduc-
tion of the NVIDIA Fermi architecture triggered the
development of MAGMA GEMM kernels tuned for that
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architecture [29], [28]. Although tuning was an important
part of this work, it was accomplished through exhaustive
experimentation rather than a systematic autotuning effort.

One important development in MAGMA was the
implementation of complex GEMM routines by expressing
the complex matrix multiplication through three real matrix
multiplications and five real matrix additions [15], which
results in up to 25 percent decrease in the number of
floating-point operations [29]. However, Higham observes
that this method has a fundamental numerical weakness,
since the “imaginary part may be contaminated by relative
errors much larger than those for conventional multi-
plication” [18]. Although, Higham also notes that “if the
errors are measured relative to kAk kBk [. . . ], then they are
just as small as for conventional multiplication” [18]. The
method simply employs the SGEMM and DGEMM routines
for an implementation of the CGEMM and ZGEMM
routines with a reduced number of floating-point opera-
tions and different numerical properties. Since it does not
involve implementation of any new kernels, it will not be
further discussed here.

An important approach to the development of optimized
GEMM routines is code generation through compiler
transformations. Rudy et al. [38] presented the CUDA-
CHiLL source-to-source compiler transformation and code
generation framework, which transforms sequential loop
nests to high-performance GPU code, based on a polyhedral
transformation system CHiLL [9]. Autotuning was used to
explore a small parameter space (tiling in multiples of 16,
up to 128). Fermi SGEMM A�B kernel was produced with
performance slightly lower than CUBLAS, due to not using
texture caches (which has been remedied since then,
according to the authors).

Cui et al. [11] presented a similar system built using the
Open64 compiler [36] and the WRaP-IT/URUK/URGenT
polyhedral toolchain [10]. Here the authors started with
optimized MAGMA/CUBLAS Fermi SGEMM kernels
(A�B;AT �B;A�BT ;AT �BT ) and used automatic code
transformations to extrapolate the SGEMM performance to
the other three Level 3 BLAS kernels (STRMM, STRSM,
SSYMM) with all combinations of inputs covered (left/
right, lower/upper). Indeed, performance very close to
SGEMM was reported for all the other kernels, greatly
outperforming CUBLAS.

Two recent articles describe low-level development of
GPU matrix multiplication, without any use of autotuning
methodology. Tan et al. [40] describe a joint work by the
Institute of Computing Technology, Chinese Academy of
Science and NVIDIA on the development of the double
precision (DGEMM) A�B kernel to be used in the High
Performance Linpack (HPL) benchmark for the Tianhe-1A and
Nebulae Chinese supercomputers. The process is based on
meticulous analysis of the hardware and instruction sche-
duling in assembly using NVIDIA’ s assembler for Fermi (not
publicly available). Impressive performance of 362 Gflop/s
is reported, which corresponds to 70 percent efficiency.

Similar work has been done by Nakasato [27] who
developed GEMM kernels for the Cypress GPU from ATI.
Single and double precision A�B and AT �B kernels were
developed in real arithmetic (using row-major layout). An

astounding performance of 2 Tflop/s in single precision
and 470 Gflop/s in double precision was shown. The
kernels were coded using AMD Intermediate Language (IL),
an assembly-like language for the AMD IL virtual instruc-
tion set architecture [1].

5 ORIGINAL CONTRIBUTION

One contribution of this work is the introduction of a
universal code stencil for producing all variants of the
GEMM routine included in the BLAS standard. This
universal code supports: real and complex arithmetic,
single and double precision, transposed, nontransposed,
and conjugate transposed layout of input matrices. The
code also supports memory access with and without using
texture caches, with texture reads implemented as both 1D
texture reads and 2D texture reads.

The main contribution of this work is in the search space
generator, specifically in the mechanism for pruning the
search space. Especially important is the fact that the size of
the search space can easily be controlled and adjusted to a
smaller size for quicker searches or to a bigger size for more
exhaustive searches. At the same time, the parameters
controlling the size of the search space are intuitive to
anyone with basic understanding of the Single Instruction
Multiple Threads GPU programming model.

Finally, the desired products of this work are GEMM
kernels for the NVIDIA Fermi architecture that match or
exceed existing CUBLAS kernels and previous MAGMA
kernels in all cases, with significant improvement in the
case of the complex double precision kernel (ZGEMM).

6 SOLUTION

6.1 Hardware Target

A number of articles are available with the details of the
Fermi architecture [33], [35], [32]. Here, the most important
differences from the previous generation of NVIDIA GPUs
are briefly discussed. The crucial new features include: fast
double precision, L2 and L1 caches, and ECC protection.

The most important feature, from the standpoint of
numerical computing, is double precision performance on
a par with single precision performance. Double precision
operations consume twice the storage of single precision
operations (two 32-bit registers per element) and execute
at half the throughput of single precision operations
(16 operations per multiprocessor per cycle), which is the
desired behavior. The Fused Multiply-Add (FMA) opera-
tion is available, which offers extra precision over the
Multiply-Add (MADD) operation. Also, the floating-point
hardware supports denormalized numbers and all four
IEEE 754-2008 rounding modes (nearest, zero, positive
infinity, negative infinity).

Fermi contains a 768 KB L2 cache shared by all
multiprocessors and a 64 KB L1 cache per multiprocessor.
The L1 can be configured as 16 KB of (hardware controlled)
cache and 48 KB of (software controlled) shared memory or
the other way around. Shared memory is more useful with
more regular (more predictable) memory access patterns,
while hardware cache is more useful with less regular (less
predictable) access patterns. Since matrix multiplication is a

KURZAK ET AL.: AUTOTUNING GEMM KERNELS FOR THE FERMI GPU 2047

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on July 23,2020 at 03:46:31 UTC from IEEE Xplore.  Restrictions apply. 



very regular and predictable workload, the first option is
always used in this work, with 48 KB of shared memory
and 16 KB of L1 cache. The L1 cache still plays a vital role in
achieving performance by caching register spill, which
would go to DRAM without the cache hierarchy.

Finally, Fermi is the first GPU to support ECC protection
against bit flips caused by cosmic rays [30]. Fermi’ s register
files, shared memory, L1 cache, L2 cache, and DRAM are all
ECC protected. One exception to the rule is Fermi’ s texture
cache. The texture cache has two parts: a 12 KB L1 cache in
each SM and a larger L2 cache. While the L2 is ECC protected,
the L1 is not. However, since the L1 is quite small, and the
lifetime of data in the L1 is very low, silent errors are very
unlikely in all but the largest installations. Also, the issue is
expected to be fixed in the Kepler architecture [26].

6.2 GEMM Basics

The BLAS standard defines the general matrix multi-
plication operation as C ¼ �A�Bþ �C, where C;A, and
B are matrices of sizes m� n;m� k, and k� n, respec-
tively, and � and � are scalars. In canonical form, matrix
multiplication is represented by three nested loops
(Algorithm 1).1

Algorithm 1. Canonical form of matrix multiplication

1: for m ¼ 0 to M do

2: for n ¼ 0 to N do

3: for k ¼ 0 to K do

4: Cm;nþ ¼ �Am;k �Bk;n

5: end for

6: Cm;n ¼ �Cm;n
7: end for

8: end for

The primary tool in optimizing matrix multiplication is
the technique of loop tiling. Tiling replaces one loop with
two loops: the inner loop incrementing the loop counter
with the step of one and the outer loop incrementing the
loop counter with the step equal to the tiling factor. In the
case of matrix multiplication, tiling replaces the three loops
of Algorithm 1 with the six loops of Algorithm 2. Tiling
improves locality of reference by exploiting the fact that
matrix multiplication involves Oðn3Þ floating-point opera-
tions over Oðn2Þ data items, which is referred to as the
surface to volume effect.

Algorithm 2. Tiling of matrix multiplication

1: for ~m ¼ 0 to M step Mtile do

2: for ~n ¼ 0 to N step Ntile do

3: for ~k ¼ 0 to K step Ktile do

4: for m ¼ 0 to Mtile do

5: for n ¼ 0 to Ntile do

6: for k ¼ 0 to Ktile do

7: C ~mþm;~nþnþ ¼ �A ~mþm;~kþk �B~kþk;~nþn
8: end for

9: end for

10: end for

11: end for

12: end for

13: end for

Scaling C by � is skipped for clarity.

Finally, the technique of loop unrolling is applied, which

replaces the three innermost loops with a single block of

straight-line code (a single basic block), as shown by

Algoritm 3. The purpose of unrolling is twofold: to reduce

the penalty of looping (the overhead of incrementing loop

counters, advancing data pointers and branching), and to

increase instruction-level parallelism by creating sequences

of independent instructions, which can fill out the proces-

sor’ s pipeline.

Algorithm 3. Unrolling of matrix multiplication

1: for ~m ¼ 0 to M step Mtile do

2: for ~n ¼ 0 to N step Ntile do

3: for ~k ¼ 0 to K step Ktile do

4: instruction

5: instruction

6: instruction

7: ...
8: end for

9: end for

10: end for

This optimization scheme is universal for almost any

computer architecture, including “standard” superscalar

processors with cache memories, GPU accelerators, and

other unconventional architectures, such as the IBM Cell B.

E. processor [23]. Tiling, also referred to as blocking, is often

applied at multiple levels, e.g., L2 cache, L1 cache, registers

file, etc. Unrolling an outer loop, and then fusing together

copies of the inner loop, sometimes called unroll and jam, is

usually applied until the point where the register file is

exhausted. Unrolling the inner loop beyond that point, but

without reordering instructions, is used to further reduce

the overhead of looping.

6.3 Universal GEMM Stencil

6.3.1 General Structure

A GPU is a data-parallel device with the barrier being the

only mechanism for synchronization. Therefore, paralleliza-

tion relies on identifying independent work. Parallelization

at the device level is shown on Fig. 1. Matrix multiplication

of the general form C ¼ C þA�B of size Mdev �Ndev �
Kdev is parallelized by spanning matrix C with a 2D grid of

tiles. Each tile is processed by one thread block. Each thread

block passes through a Mblk �Kdev stripe of A and a Kdev �
Nblk stripe of B and produces the final result for a Mblk �
Nblk tile of C. In one iteration of the outermost loop a thread

block produces the partial result of a Mblk �Nblk �Kblk

matrix multiplication. (While Kdev is the loop boundary for

the outermost loop, Kblk is the tiling factor for that loop.)

The tile of C is read from the device memory and kept in

registers throughout the duration of the thread block’ s

operation. Mblk �Kblk stripe of A and Kblk �Nblk stripe of B

are placed in shared memory for each iteration of the

outermost loop.
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Fig. 2 shows how a Mblk �Nblk �Kblk partial result is

produced in one iteration of the outermost loop of the

thread block’s code. The figure shows parallelization at the

thread level. The light shade shows the shape of the thread

grid and the dark shade shows the elements involved in the

operations of a single thread.
Fig. 3 shows the operation from the perspective of one

thread. Each thread streams in elements of A and B from

the shared memory to the registers and accumulates the

matrix multiplication results in C, residing in registers. This

is the ideal situation. Whether it actually is the case depends

on the actual tiling factors at each level. Whenever the

compiler runs out of registers, register spills to memory will

occur, which on Fermi is mitigated to some extent by the

existence of the L1 cache.
Two comments about the use of shared memory are in

place here. One important detail is that the shared memory

is allocated in a skewed fashion, i.e., an array of size M �N
is declared as M �N þ 1, which is the usual “trick” to

eliminate bank conflicts whether a warp accesses the matrix

by rows or by columns. Skewing is required for matrix A if

it is transposed, and always required for matrix B. Here, for

simplicity, skewing is always applied to both matrices.
Another comment concerns the use of the shared

memory in general. For some GPU architectures, the shared

memory can be bypassed altogether for one of the input

matrices [41], [27]. This turns out not to be the case on the

Fermi, where the use of shared memory is required to

mitigate strided access to the device memory and redun-

dant reads from the device memory by multiple threads in

the same block. Here, matrices A and B are always placed

in the shared memory, which also simplifies the coding of

different transposed/nontransposed scenarios.

6.3.2 Pipelined Loop

The last important concept in optimizing matrix multi-

plication is the classic technique of software pipelining

(Fig. 4), also referred to as double buffering. The objective of

software pipelining is to increase the instruction level

parallelism by overlapping arithmetic operations from
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even iterations with memory operations from odd itera-
tions. The concept is especially applicable to dual-issue
architectures with two pipelines, one devoted to arithmetic
and the other to memory accesses, which can issue
instructions in the same cycle. An iconic dual-issue
architecture was the IBM Cell B. E. processor.

The Fermi chip is also a dual-issue architecture and
double buffering is applicable to the GEMM loops. One
difference from the canonical structure of Fig. 4 stems from
the data-parallel nature of the device. Since all the work is
partitioned to completely independent sets, there is no
need for storing the results until the very end. Because of
that, computations of even iterations are only overlapped
with reads of odd iterations, but not stores, which are done
at the very end.

Fig. 5 shows the flow of data through the memory
system of the Fermi GPU. Normally, data are read to
registers and written back to the memory through L1 and
L2 caches. Alternatively, read-only data can be read
through texture caches. Texture caches do not have any
fundamental performance advantage over L1 and L2
caches. However, passing read-only data through texture
caches leaves more space in L1 and L2 for read/write data,
register spills, etc. For GEMMs it always pays off to use
texture caches to access the A and B input matrices. An
added advantage is the use of texture clamping to avoid
cleanup codes.

Data can also be transferred between the registers and
the shared memory. The purpose of the shared memory is
to enable communication between threads. It is a fallacy to
think of the shared memory as a cache/scratchpad
memory/local store. The GPU philosophy is to hide
memory latency through massive SIMT, not through the
use of a scratchpad memory. If one treats the GPU as a
vector device, where a warp is the vector, then the shared
memory can be thought of as a vector register file, enabling
shuffles/permutations of vector elements. In the context of
matrix multiplication, the shared memory allows one to
deal efficiently with transposed access.

Algorithm 4 shows the pseudocode for the generic
GEMM stencil. The code follows the classic pipelined loop
scheme with a prologue and epilogue. In the steady state,
the loop body loads elements of A and B from shared
memory to registers and computes their product, while at
the same time loading another batch of elements of A and B
to a separate set of registers. The loading from the device
memory to the “odd” registers happens in lines 6 and 7. The
loading from the shared memory to the “even” registers
and the computation happens in the loop between lines 8
and 12. The values in the “odd” registers are passed to the
shared memory in lines 14 and 15, to be used in the

upcoming iteration of the loop. This last part has to be
protected with the __syncthreads() barriers, to avoid
the data hazard on access to the shared memory. One of
these barriers can be eliminated at the cost of doubling the
shared memory usage. This, however, decreases occupancy,
which inevitably decreases performance. The factors alpha
and beta are applied when storing the results in the device
memory (line 23). This pipelining scheme, developed for
the MAGMA project by Nath et al. [29] has shown itself to
be fastest in practice.

Algorithm 4. Generic GEMM stencil pseudocode

1: Cregs ( 0

2: A0 dev) shmem

3: B0 dev) shmem

4: __syncthreads();

5: for K ¼ 0 to Kdev �Kblk step Kblk do

6: Aodd dev) regs

7: Bodd dev) regs

8: for k ¼ 0 to Kblk step 1 do

9: Aeven½k� shmem) regs

10: Beven½k� shmem) regs

11: C ¼ C þAeven½k� �Beven½k�
12: end for

13: __syncthreads();

14: Aodd regs) shmem

15: Bodd regs) shmem

16: __syncthreads();

17: end for

18: for k ¼ 0 to Kblk step 1 do

19: Aodd½k� shmem) regs

20: Bodd½k� shmem) regs

21: C ¼ C þAeven½k� �Beven½k�
22: end for

23: Cdev ¼ alpha� Cregs þ beta� Cdev
regs—registers, shmem—shared memory, dev—device

memory

even—even iteration, odd—odd iteration.

6.3.3 Parameterization

The code is generalized to handle: double and single
precision, real and complex arithmetic, and transposition
(and conjugation) of A and B. It also allows for reading the
device memory with or without the use of texture caches. If
texture caches are used, matrices A and B can be accessed
either as 1D textures or 2D textures. Further on, only the use
of 1D textures is discussed, since this is the fastest
performing scenario. All options are controlled using the
C preprocessor’s macro definitions (#define) and the C
language type definitions (typedef). Altogether the code
can be compiled into 78 different variants. This does not
result in a code bloat, because for the most part, different
options are orthogonal. The entire stencil is roughly 500
lines long. Such small size is also due to the fact that
unrolling is left entirely to the compiler. Only #pragma

unroll directives are used. All loops are unrolled, except
for the outermost loop (line 5). Such aggressive unrolling is
a common practice on GPUs. The volume of resulting code
very rarely prevents the compiler from unrolling it.
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Different precisions (single/double) are handled by
macros with type definitions. Complex arithmetic is
handled by inline functions defined in the CUBLAS library
(cuCadd(), cuCmul(), cuCfma(), etc.), which are cast
to additions and multiplications for real arithmetic. So is
conjugation of an input matrix if it is conjugate-transposed.
Different ways of accessing the device memory (texture
caches or no texture caches) are implemented through
conditional compilation of the address translation blocks.
Transposition of A and B is handled when loading from
device memory to registers and shared memory (lines 2, 3;
6, 7; and 14, 15). The innermost loops performing the actual
computation (lines 8-12) are oblivious to the layout of the
input matrices.

Finally, the size of work for a thread block is para-
meterized (Mblk;Nblk;Kblk), as well as the shape of the
thread grid (blockDim:x; blockDim:y). It can also be ob-
served that the thread grid can be reshaped for reading of A
and B as long as each of the three shapes perfectly overlay
the corresponding matrix (Fig. 6). Therefore, the values
MdimA;NdimA;MdimB;NdimB are also the stencil’s parameters
(subject to preprocessor correctness checks). Also, for
consistency, blockDim:x and blockDim:y will be referred
to, from now on, as Mdim and Ndim.

6.4 Search Space Generator

The search space generator is a brute-force machinery that
runs through all possible values of parameters Mblk;Nblk;
Kblk;Mdim;Ndim;MdimA;NdimA;MdimB;NdimB and rejects the
combinations that produce invalid code and the combina-
tions that do not meet certain performance guidelines, e.g.,
minimum occupancy requirement. To start with, the 9D
parameter space is enormous. Constraints come from a few
different sources. Here, the following categories of con-
straints are identified: queryable hardware constraints, non-
queryable hardware constraints, hard implementation constraints,
and soft implementation constraints.

6.4.1 Hardware and Implementation Constraints

Queryable hardware constraints are hardware constraints
which can be queried at runtime using calls to the CUDA
runtime library (specifically the cuDeviceGetAttri-

bute() function). Nonqueryable hardware constraints are
hardware constraints which cannot be queried like that, but
are tied to the GPU compute capability and defined in CUDA

documentation (e.g., “NVIDIA CUDA C Programming
Guide” [31, Appendix G]). Hard implementation constraints
are constraints that would make the implementation invalid
if violated, and soft implementation constraints are con-
straints that would make the implementation perform
poorly if violated, but not make it invalid.

The following device parameters are queried:

. WARP SIZE,

. MAX THREADS PER BLOCK,

. MAX REGISTERS PER BLOCK,

. MAX SHARED MEMORY PER BLOCK.

Then the compute capability is checked using the cuDe-

viceComputeCapability() function and the following
parameters are set using a table lookup:

. MAX WARPS PER SM,

. MAX BLOCKS PER SM.

Here, a few simplifying assumptions are made, that seem to
hold for all compute capabilities so far. It is assumed that
the maximum number of threads per multiprocessor is
defined by the maximum number of warps

MAX THREADS PER SM

¼MAX WARPS PER SM �WARP SIZE;

the number of 32-bit registers per multiprocessor equals the
maximum number of registers per block, i.e.,

MAX REGS PER SM

¼MAX REGISTERS PER BLOCK;

and the amount of shared memory per multiprocessor
equals the maximum amount of shared memory per
block, i.e.,

MAX SHMEM PER SM

¼MAX SHARED MEMORY PER BLOCK:

6.4.2 Performance Guidelines

Performance guidelines are provided to the generator as input
and allow for adjusting the amount of generated combina-
tions. Three such guidelines are used here: minimum
occupancy, minimum number of blocks per multiprocessor,
and minimum register reuse. Minimum occupancy defines
the minimum number of threads, per multiprocessor, that
the kernel is required to launch. The SIMT computation
model of the GPU relies on a massive number of simulta-
neously active threads to deliver performance, so it is
reasonable to specify that a kernel should allow for, e.g.,
the minimum of 512 threads (out of 1,536) to be active at the
same time in a multiprocessor. This constraint eliminates
kernels that consume resources, such as register and shared
memory, too aggressively. Similarly, the minimum number
of blocks per multiprocessor requirement eliminates kernels
that consume resources too heavily to allow for at least the
given number of blocks to reside in one multiprocessor.
Finally, the register reuse requirement forces a given number
of floating-point operations to be performed per single
memory operation. This constraint eliminates kernels that
move data too much and do not compute enough. To be
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precise, the value is a floating-point ratio of FMAs to loads in
the innermost loop of the kernel (Algorith 4, lines 8-12).

6.4.3 Generation and Pruning

Algorithm 5 shows the nested loops of the search space
generator. The two outermost loops iterate over the sizes of
the thread grid. The three innermost loops iterate over the
sizes of the block’s working space. The steps for Mblk and
Nblk are Mdim and Ndim, respectively (the thread grid has to
overlay a tile of C). Kblk does not have to be constrained in
any way. (The step is 1.)

Algorithm 5. Search space generator pseudocode

for Ndim ¼ 1 to NdimMAX step 1 do

for Mdim ¼ 1 to MdimMAX step 1 do

for Kblk ¼ 1 to KblkMAX step 1 do

for Nblk ¼ Ndim to NblkMAX step Ndim do

for Mblk ¼Mdim to MblkMAX step Mdim do

if parameters meet constraints then

generate all variants

ðMdimA;NdimA;MdimB;NdimBÞ
such that:

MdimA �NdimA ¼¼Mdim �Ndim

MdimA%Mblk ¼¼ 0

NdimA%Kblk ¼¼ 0

MdimB �NdimB ¼¼Mdim �Ndim

MdimB%Kblk ¼¼ 0

NdimB%Nblk ¼¼ 0

end if

end for

end for

end for

end for

end for

In principle, the loops upper boundaries could be set to
some device parameters, e.g., the upper boundaries for the
two outermost loops could be set toMAX BLOCK DIM X

and MAX BLOCK DIM Y . Here the boundaries are set to
256 for MdimMAX;NdimMAX;MblkMAX, and NblkMAX, and to
64 for KblkMAX. The choice was made experimentally, such
that no combinations are missed because of the loop
boundaries being too low, i.e., increasing the boundaries
does not produce any more valid combinations. (All such
combinations are eliminated by the constraints discussed
further.) At the same time, the running time of the generator
is kept short (on the order of seconds).

Algorithm 6 shows the set of constraints enforced inside
the nested loops of Algorithm 5. It is divided into four
sections. The first section enforces a mixed set of hardware
and implementation (hard and soft) constraints. The second
section enforces the minimum occupancy performance
guideline, based on the amount of available shared
memory. The third section enforces the minimum occu-
pancy performance guideline, based on the number of
available registers. Finally, the fourth section enforces the
minimum register reuse performance guideline. Next, each
block is discussed in detail.

Algorithm 6. Search space generator constraints
Require: Mdim �Ndim �MAX THREADS PER BLOCK

Require: ðMdim �NdimÞ%WARP SIZE ¼¼ 0

Require: ðMblk �KblkÞ%ðMdim �NdimÞ ¼¼ 0

Require: ðKblk �NblkÞ%ðMdim �NdimÞ ¼¼ 0

shmem per block ¼ ððMblk þ 1Þ �K þ ðK þ 1Þ �NÞ �
sizeofðtypeÞ
blocks per sm ¼ minðMAX SHMEM PER SM=

shmem per block;MAX BLOCKS PER SMÞ
warps per block ¼ ðMdim �NdimÞ=WARP SIZE

warps per sm ¼ minðblocks per sm�
warps per block;MAX WARPS PER SMÞ
blocks per sm ¼ warps per sm=warps per block
Require: blocks per sm �MIN BLOCKS PER SM

threads per sm ¼Mdim �Ndim � blocks per sm
Require: threads per sm �MIN THREADS PER SM

regs per thread ¼ ðMthr �NthrÞ þ ðMthr þNthrÞ
regs per block ¼ regs per thread� ðMdim �NdimÞ
regs per block þ¼Mblk �Kblk þKblk �Nblk

regs per block �¼ sizeofðtypeÞ=sizeofðfloatÞ
blocks per sm ¼ minðMAX REGS PER SM=

regs per block;MAX BLOCKS PER SMÞ
warps per block ¼ ðMdim �NdimÞ=WARP SIZE

warps per sm ¼ minðblocks per sm�
warps per block;MAX WARPS PER SMÞ
blocks per sm ¼ warps per sm=warps per block
Require: blocks per sm �MIN BLOCKS PER SM

threads per sm ¼Mdim �Ndim � blocks per sm
Require: threads per sm �MIN THREADS PER SM

if real arithmetic then

regs reuse ¼ ðMthr �NthrÞ=ðMthr þNthrÞ
else {complex arithmetic}

regs reuse ¼ ð4�Mthr �NthrÞ=ð2� ðMthr þNthrÞÞ
end if

Require: regs reuse �MIN REGS REUSE

The first block applies a set of straightforward checks.
Line one verifies that the thread grid does not exceed the
maximum number of threads. Line two checks if the thread
grid is divisible into warps. Line three checks if the thread
grid can be used (regardless of its shape) to read a stripe of
A, without any threads being idle. Similarly, line 4 checks if
the thread grid can be used (regardless of its shape) to read
a stripe of B, without any threads being idle.

The second block enforces the minimum occupancy
based on shared memory consumption. First, the amount of
shared memory required by the kernel is calculated. This
equals the amount of shared memory required to store a
stripe of A and a stripe of B (Algorithm 4, lines 2, 3, and 14,
15). Then, the number of possible thread blocks per
multiprocessor is calculated and filtered though the hard-
ware maximum. Next, the number of warps is calculated
and also filtered through the hardware maximum. Finally,
the number of possible blocks per multiprocessor and the
number of possible threads per multiprocessor are recalcu-
lated and checked against the corresponding performance
guidelines. Admittedly, some checks are redundant.
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The third block performs similar checks with respect to the
register consumption. First, the number of registers required
by the kernel is calculated. This equals the number of
registers to “prefetch” odd iteration A and B (Algorithm 4,
lines 6, 7), stream in even iteration A and B (lines 9, 10), and
accumulate the results in C (line 11). What follows closely
resembles the preceding block. The number of possible
thread blocks per multiprocessor is calculated and filtered
through the hardware maximum. Next, the number of warps
is calculated and also filtered through the hardware max-
imum. Finally, the number of possible blocks per multi-
processor and the number of possible threads per
multiprocessor are recalculated and checked against the
corresponding performance guidelines. It has to be pointed
out that the approach is heuristic. When compiled, the code
will use more registers. (Registers will be used for local
variables, loop counters, etc.)

It has to be pointed out that formulas for resource usage
are only approximations. Specifically, the formula for
register usage specifies only the minimum number of
registers necessary for the double-buffered loop to function
efficiently. It is almost guaranteed to be the lower bound on
the actual register usage of the compiled kernel. This is in
perfect alignment with the autotuning and pruning philo-
sophy. The idea is to only eliminate kernels, which are
certain to perform poorly. Some kernels with the actual
register usage beyond what was anticipated will make it to
the benchmarking phase, but will perform poorly, and not
be picked as optimum. The point is that the elimination
process is permissive rather than restrictive.

The last block simply calculates the ratio of loads to
FMAs in the innermost loops (Algorithm 4, lines 9-11) and
checks it against the performance guideline. The conditional
takes into account the different ratio of memory operations
to computation for real arithmetic and complex arithmetic.
(Complex arithmetic is twice as compute intensive as real
arithmetic.)

7 RESULTS AND DISCUSSION

7.1 Generation Results

Table 1 shows the performance guidelines applied. The
values were chosen experimentally to produce the number of
combinations for each of the 16 versions of the GEMM to be
on the order of hundreds. Notably, the minimum occupancy
of 512 threads per multiprocessor (0.33) was always used and
the minimum number of blocks per multiprocessor of two.
The only parameter that varied was the register reuse,

ranging from two to five. (Integer values were used, although
in principle, the ratio is a floating-point number.)

Fig. 7 shows the number of combinations produced for
each of the 16 versions of the GEMM when the guidelines
from Table 1 are applied. The number varies from slightly
below 100 to slightly above 400. It should be noted that the
choice of performance guidelines and the number of
combinations produced is an arbitrary decision, which
trades off the range of the search sweep with the time
required to perform the sweep.

The pruning of the search space is a powerful and
necessary mechanism here. For instance, with the perfor-
mance guidelines taken away (and only hardware and
implementation constraints applied) the generator will
produce slightly more than one million combinations of
SGEMM A�B. Take another example, using the guidelines
from Table 1 for CGEMMA�B, but changing the minimum
register reuse from 5.0 to 6.0 will create only six combina-
tions, which do not include the fastest performing one. As a
general observation, the generator produces many combina-
tions with very good characteristics, in terms of occupancy
and register reuse, which turn out not to perform the fastest.
This strengthens the hypothesis that autotuning is a
necessary component of GPU code development.

7.2 Selection Results

With all combinations generated, the next steps are runs,
performance measurements, and selection of the fastest
kernels. A few words about the hardware/software setup
are in place here. The process of autotuning was conducted
and the final performance results were produced on an
NVIDIA Tesla S2050 system, with the Fermi GPU contain-
ing 14 multiprocessors and clocked at 1.147 GHz. CUDA
SDK 4.0 release candidate 11 was used, the newest version
at the time of the experiments. Square matrices A;B, and C

were used in all cases and problem sizes were chosen such
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TABLE 1
Search Space Generator Constraints for Each Kernel Type

aminimum number of threads.
bminimum ratio of load instructions to fused
multiply-add instructions in the innermost loop.
cminimum number of thread blocks per multiprocessor.

Fig. 7. Number of variants generated for each kernel type under the
constraints listed in Table 1.
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that all data would occupy 1 GB of the GPU memory. This
results in the dimensions of 10,000 for SGEMM, 8,000 for
CGEMM and DGEMM, and 6,000 for ZGEMM. Three runs
were made for each case and the maximum performance
taken. This was more of a precaution than an actual need,
since performance fluctuation was virtually inexistent. With
roughly 3,000 cases to run, the process takes 1 day on a
single GPU.

The timing runs confirm that the generator with the
pruning mechanism could not be a selection tool on its
own. As was already mentioned, using strict performance
guidelines does not result in converging on the fastest case.
Although, under the constraints used, all tested kernels are
good candidates for fast kernels, their performance can
vary wildly. Here, ZGEMM showed the smallest perfor-
mance variation. The slowest of all ZGEMM kernels ran at
180 Gflop/s, which is slightly more than half of the speed
of the fastest, running at 340 Gflop/s. At the same time, the
slowest SGEMM kernel ran at 64 Gflop/s which is less
than 10 percent of the speed of the fastest one, running at
662 Gflop/s.

Table 2 shows the final selection of the fastest kernels. It
needs to be pointed out that for each case there was a large
number of kernels with performance very close to the fastest
one (sometimes a couple of kernels within one percent).
Here, simply the fastest one in each case is reported. The
table shows a comparison against CUBLAS and MAGMA
(whichever was faster for each case). Small improvements
can be seen in almost all cases. Significant improvement can
be observed for ZGEMM. While for CUBLAS and MAGMA
ZGEMM runs only as fast as DGEMM, the new ZGEMM
runs substantially faster. The autotuning process revealed
ZGEMM kernels that successfully take advantage of its
higher computational intensity versus DGEMM. One dis-
tinct feature of the ZGEMM kernels is that, unlike for all
other cases, the tiles of theC matrix are not square. This could
be one reason that someone coding the kernels by hand
would not explore the case.

Fig. 8 shows the autotuning sweep for the A�B
ZGEMM (NoTrans, NoTrans). The flat line at 306 Gflop/s
shows the performance of the equivalent CUBLAS kernel.

The autotuning run identifies 25 variants with higher
performance. Some of them tile the C matrix in square tiles
(16� 16; 24� 24; 32� 32). Most of them, however, tile the C
matrix in rectangular tiles with dimensions taking values of:
8, 16, 24, 32, 48, and 64. The two spikes on the left side of the
chart identify the fastest variants, one corresponding to
tiling of 24� 16, the other corresponding to tiling of 16� 24.
The former is faster by a fraction of a Gflop/s.

One reason for concern could be the fact that the timing
part of the process was performed for specific (large) sizes.
One could speculate that the kernels are tuned specifically
for these sizes and perform suboptimally for other sizes.
Just to make sure that this is not the case, the performance
for the chosen kernels was measured across all matrix sizes.
Fig. 9 shows the results. Square matrices are used with sizes
corresponding to the tiling factor, 96 for SGEMM, 64 for
CGEMM and DGEMM, and 48 for ZGEMM. Here it was
considered pointless to time cases with partially filled
border tiles. Generally, the impact on performance is
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negative, but negligible. (Very efficient method of dealing
with such scenarios was designed by Nath et al. [29].) Fig. 9
shows clearly that the kernels perform consistently across
all problem sizes, rising quickly to asymptotic performance,
with the usual jitter at the beginning (more prominent for
the more bandwidth-limited cases of single precision
SGEMM and CGEMM).

8 CONCLUSIONS

It is the author’s belief that this work provides strong
evidence that autotuning is a crucial component in GPU
code development. The essential component in this process
is the capability of generating and effectively pruning the
search space. For matrix multiplication, pruning turned out
to be straightforward with the use of hardware and
implementation constraints and constraints referred to as
performance guidelines, such as minimum required occu-
pancy. The choice of constraints allows for trading the
thoroughness of the search with its duration.

The process can be generalized to other types of
workloads, including more complex kernels and more
bandwidth-bound kernels. In principle, this should be the
case as long as the code can be parameterized and its
properties, such as demand for registers and shared
memory, are expressed as functions of the parameters.

It came as a surprise that, this late into the process of
BLAS development for the Fermi architecture, an autotun-
ing process managed to prove superior to hand-tuned
codes. Although significant, the performance improve-
ments were not dramatic. Hopefully, the system will show
its power with the appearance of new architectures and also
as a platform for the development of more complex kernels.

9 FUTURE PLANS

There are areas where the usefulness of the system is
immediately applicable. The generation process revealed a
huge number of kernels with much smaller tiling factors,
performing nearly as good as kernels with larger tiling
factors. The kernels with smaller tiles can readily replace the

other kernels for smaller matrix sizes, where the use of large
tiles limits the amount of parallelism, preventing the device
from achieving good performance. For instance, for the
DGEMM A�B operation, the fastest kernel uses tiles of
64� 64 and asymptotically achieves the performance of
300 Gflop/s. The autotuning process revealed a kernel that
uses tiles of 32� 32 and asymptotically achieves the
performance of 286 Gflop/s. For small matrix sizes the use
of the latter kernel will quadruple parallelism at the loss of
5 percent of asymptotic kernel performance. Depending on
the problem size, this can result in a huge performance gain.

Another opportunity presents itself where one dimen-
sion of the operation is significantly smaller than the other.
MAGMA is a great example here. For instance, in the
right-looking LU factorization, the GEMM is called with
the dimension K ¼ 64, which is much smaller than M and
N . This causes the default GEMM kernel to only achieve
253 Gflop/s instead of the asymptotic 300 Gflop/s. When
tuned for this shape, a kernel was found by the autotuner
that delivers 268 Gflop/s. If K is further reduced to 32, the
default kernel’s performance drops to 204 Gflop/s, while
the autotuner is capable of finding a kernel that delivers
242 Gflop/s for that case.

10 SOFTWARE

Ultimately the software will be distributed as part of the
MAGMA project (http://icl.cs.utk.edu/magma/). Initial
prototype snapshots will be posted on the authors’ websites
(http://icl.cs.utk.edu/people/). All code will be released
under the modified BSD license.
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