
Automatic Experimental Analysis of Communication Patterns
in Virtual Topologies∗

Nikhil Bhatia 1, Fengguang Song 1, Felix Wolf 1, Jack Dongarra 1, Bernd Mohr 2, Shirley Moore 1

1 University of Tennessee, ICL, 1122 Volunteer Blvd Suite 413, Knoxville, TN 37996-3450, USA

{bhatia, song, fwolf, dongarra, shirley}@cs.utk.edu
2 Forschungszentrum Jülich, ZAM, 52425 Jülich, Germany

b.mohr@fz-juelich.de

Abstract

Automatic pattern search in event traces is a powerful
method to identify performance problems in parallel appli-
cations. We demonstrate that knowledge about the virtual
topology, which defines logical adjacency relationships be-
tween processes, can be exploited to explain the occurrence
of inefficiency patterns in terms of the parallelization strat-
egy used in an application. We show correlations between
higher-level events related to a parallel wavefront scheme
and wait states identified by our pattern analysis. In ad-
dition, we visually expose relationships between pattern oc-
currences and the topological characteristics of the affected
processes.

Keywords: performance tools, event tracing, virtual
topologies, visualization, wavefront algorithms

1 Introduction

Parallel applications often fail to exploit the full power
of the underlying computing hardware. Their optimization,
however, is extremely difficult due to the inherent complex-
ity of parallel systems and their communication structures.

In many parallel applications, each process (or thread)
communicates only with a limited number of other pro-
cesses. For example, a simulation modeling the spread of
pollutants in the environment might decompose the over-
all simulation domain into smaller pieces and assign each
of them to a single process. Given this distribution, a pro-
cess would then only communicate with processes owning
subdomains adjacent to its own. The mapping of data onto
processes and the neighborhood relationship resulting from

∗This work was supported by the U.S. Department of Energy under
Grants DoE DE-FG02-01ER25510 and DoE DE-FC02-01ER25490

this mapping is called a virtual topology. In general, a vir-
tual topology is specified as a graph. Many applications
use Cartesian topologies, such as two- or three-dimensional
grids. Virtual topologies can include processes or threads,
depending on the programming model being used. Of-
ten, the virtual topology also influences the order in which
certain computations are performed. For example, wave-
front algorithms [7] propagate data along the diagonals of a
multi-dimensional grid of processes.

The MPI standard [9] offers a set of API functions to al-
low for an efficient mapping of virtual topologies onto the
physical topology of the underlying machine so that com-
munication speeds between neighbors can be optimized.
Beyond that, however, topological knowledge can help
identify performance problems more effectively, especially
as many parallel algorithms are parametrized in terms of a
virtual topology.

In our previous work [14], we demonstrated that search-
ing event traces of parallel applications for patterns of in-
efficient behavior is a successful method of automatically
generating high-level feedback on application performance.
This was accomplished by identifying wait states recogniz-
able by temporal displacements between individual events
across multiple processes or threads but without utilizing
any information on logical adjacency between processes or
threads. In this article, we show that enriching the informa-
tion contained in event traces with topological knowledge
allows the occurrence of certain patterns to be explained in
the context of the parallelization strategy applied and, thus,
significantly raises the abstraction level of the feedback re-
turned. In particular, we demonstrate that topological infor-
mation allows the following:

1. Detecting higher-level events related to the parallel al-
gorithm, such as the change of the propagation direc-
tion in a wavefront scheme.

1



2. Linking the occurrence of patterns that represent un-
desired wait states to such algorithmic higher-level
events and, thus, distinguishing wait states by the cir-
cumstances causing them.

3. Exposing the correlation of wait states identified by
our pattern analysis with the topological characteristics
of affected processes by visually mapping their sever-
ity onto the virtual topology.

For this purpose, we have developed an easy-to-use ex-
tension of the KOJAK toolkit [14]. KOJAK is a post-mortem
trace analysis tool that enables application developers to
search event traces for the possible occurrence of a large
number of execution patterns indicating inefficient behav-
ior. The extension provides a means to record topological
information as part of the event trace and to visualize the
severity of the analyzed behaviors mapped onto the topol-
ogy. Moreover, we have enhanced the analysis by speci-
fying additional patterns that exploit topological informa-
tion to find performance problems related to wavefront al-
gorithms.

The remainder of this article is organized as follows. In
Section 2 we give a brief overview of the KOJAK toolkit
and its underlying approach of analyzing patterns in event
traces. After introducing the extension to record and ana-
lyze virtual topologies in Section 3, we demonstrate its use-
fulness using two practical examples in Section 4. Finally,
we consider related work in Section 5 and present our con-
clusion plus future work in Section 6.

2 Pattern Analysis in Event Traces

Event tracing is a well-accepted technique for post-
mortem performance analysis of parallel applications.
Time-stamped events, such as entering a function or send-
ing a message, are recorded at runtime and analyzed offline
with the help of software tools. As event traces preserve
the temporal and spatial relationships of individual events,
they allow a deeper understanding of inter-process commu-
nication and an easier identification of wait states associated
with it [13]. Since event traces tend to be very large, the
coverage of a purely manual analysis is often limited.

KOJAK is an automatic performance evaluation system
for parallel applications that relieves the user from the bur-
den of searching large amounts of trace data manually by
automatically looking for inefficient communication pat-
terns that force processes into undesired wait states. KO-
JAK can be used for MPI, OpenMP, and hybrid applications
written in C/C++ or Fortran. It includes tools for instrumen-
tation, event-trace generation, and post-processing of event
traces plus a generic browser to display the analysis results.

Figure 1 shows the entire process of analyzing an appli-
cation using KOJAK. Prior to trace generation, the appli-

EPILOG

Trace File

EXPERT
Analyzer

EARL
Abstraction

CUBE
Display

Analysis
Results

Post-Mortem Analysis

Execution

User 
Source
Code

Linker

Executable

EPILOG
Runtime
System

PMPI
Wrapper

Instrumentation

Source-Code
Preprocessing

Compilation

Figure 1. Overall architecture of the KOJAK
system.

cation needs to be instrumented. Depending on the plat-
form, this is done automatically using a combination of
source-code preprocessing and compiler-based instrumen-
tation. As a final step, the application is linked with the EPI-
LOG runtime system, which includes a PMPI interposition
library that intercepts MPI calls to perform measurements
before and after each call. Finally, when the instrumented
application is executed, it generates a trace file.

The trace file is written in the EPILOG format [4],
which provides event types covering MPI point-to-point and
collective communication as well as OpenMP parallelism
change, parallel constructs, and synchronization. Also, the
trace file may include data from hardware counters.

After program termination, the trace file is analyzed of-
fline using EXPERT [15], which identifies execution pat-
terns indicating low performance and quantifies them ac-
cording to their severity. These patterns target problems re-
sulting from inefficient communication and synchronization
as well as from low CPU and memory performance. The
analysis process automatically transforms the traces into a
compact call-path profile that includes the time spent in dif-
ferent patterns.

To simplify the analysis, EXPERT accesses the trace

2



Figure 2. Visualization of performance problems using CUBE.

through the EARL library interface, which provides random
access to individual events and precalculated abstractions
supporting the search process. EARL is well documented
and can be used for a large variety of analysis tasks beyond
the analyses performed by EXPERT. The major benefits of
using EARL as an intermediate layer between the analysis
and the event trace are reduced size and increased read-
ability of the pattern specifications. In EXPERT, patterns
are specified separately from the actual analysis process as
C++/Python classes 1 This design simplifies a later exten-
sion of the predefined pattern base, a feature we exploited
here to integrate additional patterns suitable for studying
wavefront algorithms.

Finally, the analysis results can be viewed in the CUBE

performance browser [11], which is depicted in Figure 2.
CUBE shows the distribution of performance problems
across the call tree and the parallel system using tree
browsers that can be collapsed and expanded to meet the
desired level of granularity.

Our analysis will concentrate on a frequently occurring
pattern called late sender. A process calls a blocking re-
ceive operation long before the message was sent and en-
ters a wait state until the message arrives. The situation is
depicted in Figure 3. Although this pattern involves two
processes, the wait state can be associated with exactly one
process, which is process A in this case.

EXPERT recognizes the late-sender situation by main-
taining message queues to match corresponding send and

1In addition to a C++ version of the analyzer, we also maintain a Python
version for prototyping purposes.

time

pr
oc

es
se

s

SEND

RECIEVE

Message
A

B

idle time

MPI_Send

MPI_Recv

Figure 3. A process waiting for a message that
was sent too late.

receive events and by tracking the call tree to associate the
respective MPI calls with a call path. While searching the
trace file, EXPERT maintains a matrix in which it accumu-
lates the idle times incurred for a particular (call path, pro-
cess) pair. After completion, the results are stored in an
XML file that can be loaded into CUBE for visualization.
For example, Figure 2 (left pane) shows that 6.0 % of the
execution time was spent in a wait state caused by a special
version of late sender called wavefront from NW, which is
discussed in Section 4.1. The middle tree exposes the af-
fected call path.

3 Virtual Topologies

To make the analysis topology-aware, we extended the
following parts of the KOJAK system: (i) trace format, (ii)

3



runtime system, (iii) abstraction layer, (iv) analyzer, and (v)
display.

To keep the extension simple, we restricted ourselves to
Cartesian topologies as a common case found in many of
today’s parallel applications. Other topology types, such as
general graph topologies, might be included in the future.
A Cartesian topology is essentially a multidimensional grid
structure characterized by the following parameters:

• Number of dimensions

• Size of each dimension

• Periodicity of each dimension

The periodicity specifies whether the ends of a certain di-
mension are connected. The periodicity attribute is needed,
for example, to specify a torus, a topology often found in
physical networks used for point-to-point messaging in sys-
tems, such as IBM BlueGene/L. The periodicity attribute,
however, is currently not used in our analysis.

Trace format. We added two record types that can be
used to specify Cartesian topologies: one record type to de-
fine the general layout of a Cartesian topology and another
one to map a process or thread onto a particular position
within a previously defined topology. Note that the seman-
tics of the topology can be arbitrary and that these records
can be used to describe either virtual or physical topologies.

The record type used to define a topology includes
fields to specify the number of dimensions, the size in
each dimension, and whether a dimension is periodic or
not. The record type also contains a field to specify an
MPI communicator if the topology was created using the
MPI CART CREATE function. Using this information, it is
possible to filter communication operations by the commu-
nicator representing the topology.

The record type used to map a process or thread onto a
position within a topology simply specifies a topology iden-
tifier and the coordinates of the process or thread within this
topology. The mapping does not need to be surjective, that
is, not all positions within the topology need to be filled. For
example, the topology might represent the physical topol-
ogy of the machine the application is running on, but with-
out occupying all CPUs.

Runtime system. The runtime system has been extended
to support the two new record types. There are two ways of
defining a Cartesian topology and writing the corresponding
records.

1. Automatically using MPI wrappers

2. Manually using a C/Fortran API

If the application uses MPI CART CREATE, the respec-
tive topology is automatically recorded as part of the trace
file. This feature has been implemented by letting a PMPI

wrapper, which is part of the runtime system, intercept
the topology attributes and write the topology definition
record. After processing the topology outline, the wrap-
per requests the coordinates of the calling process from the
MPI runtime system and writes a corresponding coordinate-
definition record.

Unfortunately, MPI topology support is rarely used. For
this reason, EPILOG provides a C and Fortran API to perform
exactly the steps that would otherwise be the MPI wrapper’s
responsibility. The API consists of two functions and al-
lows the definition of an up to three-dimensional Cartesian
topology. Using the API is fairly simple and requires only
minimal effort.

The following example defines a three-dimensional 4 ×
4 × 4 topology that is periodic in the first but not in the
remaining two dimensions.

if (rank .eq. 0) then
call elgf_cart_create(4,4,4,1,0,0)

endif
call elgf_cart_coords(x,y,z)

Every process executing these lines assigns itself coor-
dinates defined through the variables x, y, z, containing
values between 0 and 3.

Abstraction layer. The abstraction layer represented by
EARL is a high-level interface for reading an event trace.
Topology information can now be accessed through EARL’s
class interface in either C++ or Python and used for a large
variety of trace analysis tasks.

Analyzer. The analyzer has been enabled to read the topo-
logical information and to pass it on to the visualization
component, which performs a general mapping of analysis
results onto individual elements of the topology. In addition
to this basic capability, four patterns specific to wavefront
algorithms have been added to the analyzer. The patterns
use topological knowledge to determine the direction of
messages and to relate inefficient behavior to certain phases
of the wavefront computation. Wavefront algorithms are an
important class of algorithms commonly used to solve de-
terministic particle transport problems. The new patterns
along with their implementations are discussed along with
an application example in Section 4.1.

Display. A topology view, as depicted in Figures 5 and 6,
has been added to the original tree view of processes and
threads (Figure 2, right pane). The topology view can be
accessed through a menu and shows the distribution of the

4



time lost due to the selected pattern while the program was
executing in the selected call path. The view is automati-
cally updated as soon as the user selects another pattern or
another call path. In this fashion, the user can study the dis-
tribution of a large variety of patterns across virtual topolo-
gies.

The topology view can display one-, two-, and three-
dimensional Cartesian topologies. Three-dimensional
topologies are presented in parallel projection as a col-
lection of grid-like planes arranged on top of each other.
To make the display scalable, the user can adjust the size
of individual grid cells, the distance between neighboring
planes, and the angle used to generate a three-dimensional
perspective.

The color assigned to a certain grid cell represents the
time spent in a certain pattern. To make differences visi-
ble even across a large number of cells, the display is able
to utilize the full spectrum of available colors for a single
pattern by switching to a high-resolution color mode.

4 Examples

To study how the the virtual topology can be used to clas-
sify certain wait states, we applied our tool extension to two
example MPI codes, the ASCI SWEEP3D benchmark [1] and
an environmental science application called TRACE [5].

4.1 SWEEP3D

The first example shows (i) that topological knowledge
can be used to identify higher-level events related to distinct
phases of the parallelization scheme used in an application
and (ii) how these events influence the severity of certain
inefficiency patterns.

The benchmark code SWEEP3D is an MPI program per-
forming the core computation of a real ASCI application. It
solves a 1-group time-independent discrete ordinates (Sn)
3D Cartesian geometry neutron transport problem by cal-
culating the flux of neutrons through each cell of a three-
dimensional grid (i, j, k) along several possible directions
(angles) of travel. The angles are split into eight octants,
each corresponding to one of the eight directed diagonals of
the grid.

To exploit parallelism, SWEEP3D maps the (i, j) planes
of the three-dimensional domain onto a two-dimensional
grid of processes. The parallel computation follows a
pipelined wavefront process that propagates data along di-
agonal lines through the grid. Figure 4 shows the data-
dependence graph for a 3×3 grid. The long arrows symbol-
ize data dependencies, while diagonal lines cut through al-
gorithmically independent processes and represent the com-
putation as it progresses in the form of “wavefronts” from
the lower left to the upper right corner (short arrows). The

actual direction of the wavefront is determined by the par-
ticular angle or octant being processed at a given moment.

Figure 4. Wavefront propagation of data in
SWEEP3D.

Responsible for the wavefront computation in the code
is a subroutine called sweep(), which initiates wavefronts
from all four corners of the two-dimensional grid of pro-
cesses. The wavefronts are pipelined to enable multiple
wavefronts to follow each other along the same direction
simultaneously. Thus, the parallelization in SWEEP3D is
based on concurrency among algorithmically independent
processes and pipelining among algorithmically dependent
processes. The basic code structure of routine sweep() is as
follows:

DO octants
DO angles in octant

DO k planes
! block i-inflows
IF neighbor(E/W) MPI_RECV(E/W)
! block j-inflows
IF neighbor(N/S) MPI_RECV(N/S)

... compute grid cell ...
! block i-outflows
IF neighbor(E/W) MPI_SEND(E/W)
! block j-outflows
IF neighbor(N/S) MPI_SEND(N/S)

END DO k planes
END DO angles in octant

END DO octants

Performance models of wavefront processes, in particu-
lar as they appear in SWEEP3D, have been extensively stud-
ied [7, 12]. In this article, we analyze the characteristics of
wavefront communication from an experimental viewpoint
with emphasis on wait states resulting from the data depen-
dencies illustrated in Figure 4.

Although parallel operation in SWEEP3D can be very ef-
ficient once the pipeline is filled, the opportunity for par-
allelism is limited whenever the direction of the wavefront
changes and the pipeline has to be refilled, although the al-
gorithm allows for some overlap between pipelines in dif-

5



ferent directions. As can be seen from the code structure
inside routine sweep(), the receive calls are likely to block
whenever the pipeline is refilled and the calling process is
distant from the pipeline’s origin. This phenomenon is a
specific instance of the late-sender pattern illustrated in Fig-
ure 3.

To investigate this type of behavior, we extended the pat-
tern base normally used by our EXPERT analysis tool and
added four patterns describing the occurrence of late-sender
instances at the moment of a pipeline direction change (i.e.,
a refill), one pattern for each direction (i.e., SW, NW, NE,
SE). Since these patterns constitute a specialization of late
sender, which was already member of the pattern base,
their specifications could take advantage of EXPERT’s pub-
lish/subscribe mechanism [15] through registration for late-
sender instances published by the simple late-sender pat-
tern. In this way, only the changes of the pipeline direction
needed to be specified, reducing the amount of code nec-
essary to describe the combined situation. As the problem
is highly symmetric, we specified the direction change in a
parametrized fashion, further decreasing the lines of code
needed.

The direction change is recognized by maintaining for
every process a FIFO queue that records the directions of
messages received. For this purpose, the direction of every
message is calculated using topological information. Since
the wavefronts propagate along diagonal lines, as depicted
in Figure 4, each wavefront direction has a horizontal as
well as a vertical component, involving messages in two
different orthogonal directions, each of them correspond-
ing to one of the two receive and send statements in rou-
tine sweep(). We therefore need to consider two potential
wait states at the moment of a direction change, each re-
sulting from one of the two receive statements. Note that
the horizontal component is always executed first, limiting
the number of cases that need to be considered in order to
detect a change.

However, special attention has to be paid to processes
located at the border of the grid (Figure 4). Because they
have only a limited number of neighbors, their inbound as
well as their outbound communication may be restricted to
one direction only, depending on their position relative to
the wavefront propagation direction. For this reason, our
implementation distinguishes between different border ar-
eas to which it applies different detection rules. These rules
are parametrized in terms of the wavefront origin and the
area’s horizontal/vertical orientation.

Note that we do not make any assumption about the or-
der in which the different pipeline directions are scheduled,
making the detection algorithm more general. To also cover
the very first pipeline start, the queue is initially filled with
pseudo direction symbols.

To validate our design, we chose a problem size of

increased waiting

increased 
waiting

Figure 5. Distribution of late-sender wait
states as a result of pipeline refill from North-
West.

512 × 512 × 150 grid points with blocking factors 10 and
3 for k-planes and angles, respectively. We ran the appli-
cation with 64 processes on a Solaris cluster equipped with
UltraSPARC-III 750 MHz processors. MPI was configured
to communicate via shared memory within the same node
and via Myrinet across different nodes. The instrumentation
of user functions in the code was done fully automatically
using the platform compiler’s profiling interface. As the
program does not take advantage of MPI topology support,
we recorded the topology by manually inserting the EPILOG

API calls described in Section 3 into the module responsi-
ble for domain decomposition. Figure 2 shows the output
of our analysis as rendered by the original KOJAK GUI. The
new patterns appear in the metric tree on the left underneath
“Late Sender” and are labeled with the percentage of execu-
tion time spent in wait states caused by the pattern. The total
time spent in late-sender wait states, which can be obtained
by collapsing the late-sender node, was 25.4%. Late sender
instances observed simultaneously with a pipeline direction
change account for a little less than 60% of the overall late-
sender time. The times measured for individual directions
vary between 6.0% of total execution time for pipeline refill
from North-West and 1.7% for refill from North-East.

Figure 5 shows the new topology view rendering the dis-
tribution of late-sender times for pipeline refill from North-
West (i.e., upper left corner). The colors are assigned rela-
tive to the maximum and minimum wait times for this par-
ticular pattern. As can be seen, the corner reached by the
wavefront last incurs most of the waiting times, whereas
processes closer to the origin of the wavefront incur less.
Note that the specifications of our patterns do not make

6



any assumption about the specifics of the computation per-
formed, and should therefore be applicable to a broad range
of wavefront applications.

Although the current implementation applies to wave-
front processes based on a two-dimensional domain de-
composition, we assume that it can be easily adapted to
a three-dimensional decomposition by considering wave-
fronts propagating along three orthogonal direction compo-
nents instead of two.

4.2 TRACE

The second example highlights how visually mapping
the results of our pattern analysis onto the virtual topology
can help the user identify semantically meaningful clusters
of related behavior.

Figure 6. Distribution of wait states caused by
inherently synchronizing all-to-all operations.

TRACE simulates the subsurface water flow in variably
saturated porous media. It solves the generalized Richards
equation in three spatial dimensions. The parallelization
is based on a parallelized CG algorithm, which divides
the grid into overlapping subgrids and communicates via
MPI. The main computation is done in a subroutine called
parallelcg(). We executed the application with 32 processes
on a Linux cluster with 8 Pentium III Xeon (550 MHz) 4-
way nodes. Like in the previous example, MPI was config-
ured to communicate via shared memory within the same
node and via Myrinet across different nodes. The resulting
topology is a three-dimensional Cartesian 8 × 2 × 2 grid
(Figure 6).

The display shows the distribution of wait states in
parallelcg() caused by inherently synchronizing all-to-all
operations that occur when some processes enter the opera-
tion earlier than others. The pattern describing this situation

is among the standard patterns included in the EXPERT an-
alyzer.

The figure exhibits clusters of increased waiting times at
the corners of the three-dimensional grid that due to their
exposed location are assumed to have different computa-
tion as well as communication requirements. Without topo-
logical knowledge the affected processes would appear as
arbitrary processes and the user would be unaware of the
correlation between their particular role in the topology and
the occurrence of specific inefficiencies.

5 Related Work

Topological information has been used earlier to high-
light certain aspects of parallel performance.

Ahn and Vetter mapped counter data onto the virtual
topology of the SWEEP3D benchmark to identify clusters
of related behavior by statistical means [2]. Müllender
visualized different network topologies including four-
dimensional hypercubes as well as up to three-dimensional
grids and tori using a polygon-like vector representation
and mapped certain communication parameters, such as
the number of messages, onto their nodes to better ob-
serve communication activities in virtual shared memory
systems [10].

The three-dimensional topological display developed as
part of this work follows in its design the torus view in-
cluded in TREND [6], a tool for supervising system utiliza-
tion on the CRAY T3E. However, to accommodate a larger
variety of grid sizes ranging from very small to very large,
we made additional display parameters adjustable, such as
the distance between planes or the angle used to create the
three-dimensional perspective.

Topological knowledge has also been used for semantic
debugging of parallel applications. Huband and McDonald
describe a trace-based debugger called DEPICT that exploits
topological information to identify processes with logically
similar behavior in traces of MPI applications and to dis-
play semantic differences among these groups [8]. The
comparison is based on the order and number of events.
Also interesting to our work is DEPICT’s ability to automat-
ically identify the virtual topology in the trace using graph-
distance measures, a mechanism that could render the man-
ual recording exercised in our examples unnecessary.

6 Conclusion and Future Work

Topological knowledge can be used to significantly raise
the semantic level of the feedback given by KOJAK’s method
of scanning event traces for patterns of inefficient behavior.

Using wavefront algorithms as an example, we demon-
strated that topological information enables the identifica-

7



tion of higher-level events related to a program’s paralleliza-
tion scheme and the correlation of these higher-level events
with wait states identified by our previous pattern analysis
method. This correlation allowed us to reintroduce a time-
dimension into an otherwise timeless data model of analy-
sis results by letting pattern specifications refer to distinct
algorithm-specific execution phases. We further showed
that visually mapping wait states identified by our pattern
analysis onto the topology enables the correlation of these
wait states with topological characteristics of the affected
processes. To enhance the practical value of these concepts,
they have been implemented as an easy-to-use extension of
the KOJAK toolkit.

Future work will address the operations of wavefront
processes in more detail by (i) studying the overlap between
pipelines coming from different directions and (ii) investi-
gating the influence of alternate blocking parameters on the
performance behavior observed. We also intend to extend
the scope of the underlying principles to other algorithms,
such as parallel multi-frontal methods [3]. To further en-
hance the automatic capabilities of our tool, we will inves-
tigate ways to recognize the algorithm in advance so that
appropriate analysis patterns can be selected. Options to be
considered include adding metadata to the event trace - for
example, by instrumenting parallel libraries that are usually
aware of the algorithms applied. Another approach would
be the automatic detection in the trace itself similar to the
automatic topology detection scheme described in [8].

References

[1] Accelerated Strategic Computing Initiative (ASCI).
The ASCI sweep3d Benchmark Code. http://www.
llnl.gov/asci_benchmarks/.

[2] D. H. Ahn and J. S. Vetter. Scalable Analysis Tech-
niques for Microprocessor Performance Counter Met-
rics. In Proc. of the Conference on Supercomputers
(SC2002), Baltimore, November 2002.

[3] Iain S. Duff. Parallel implementation of multifrontal
schemes. Parallel Computing, 3:193–204, 1986.

[4] B. Mohr F. Wolf. EPILOG Binary Trace-Data
Format. Technical Report FZJ-ZAM-IB-2004-06,
Forschungszentrum Jülich, May 2004.

[5] Forschungszentrum Jülich. Solute Trans-
port in Heterogeneous Soil-Aquifer Systems.
http://www.kfa-juelich.de/icg/icg4/
Groups/Pollutgeosys/trace_e.html.

[6] Forschungszentrum Jülich. TREND - Torus RE-
sources and Node Display. http://www.
fz-juelich.de/zam/trend/.

[7] A. Hoisie, O. Lubeck, and H .Wasserman. Perfor-
mance Analysis of Wavefront Algorithms on Very-
Large Scale Distributed Systems. In Lectures Notes in
Control and Information Sciences, volume 249, page
171, 1999.

[8] S. Huband and C. McDonald. A Preliminary Topolog-
ical Debugger for MPI Programs. In R. Buyya, G. Mo-
hay, and P. Roe, editors, Proc. of the First IEEE/ACM
International Symposium on Cluster Computing and
the Grid, pages 422–429. IEEE Computer Society,
2001.

[9] Message Passing Interface Forum. MPI: A Message
Passing Interface Standard, June 1995. http://
www.mpi-forum.org.

[10] C. Müllender. Visualisierung der Speicheraktivitäten
von parallelen Programmen in Systemen mit virtuell
gemeinsamen Speicher. Master’s thesis, RWTH
Aachen, Forschungszentrum Jülich, May 1994.

[11] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and
S. Moore. An Algebra for Cross-Experiment Per-
formance Analysis. In Proc. of the International
Conference on Parallel Processing (ICPP), Montreal,
Canada, August 2004.

[12] D. Sundaram-Stukel and M. K. Vernon. Predictive
Analysis of a Wavefront Application Using LogGP.
In Proc. 7th ACM SIGPLAN Symp. on Principles
and Practices of Parallel Programming (PPoPP ’99),
pages 141–150, Atlanta, GA, May 1999.

[13] F. Wolf and B. Mohr. Specifying Performance
Properties of Parallel Applications Using Compound
Events. Parallel and Distributed Computing Prac-
tices, 4(3):301–317, September 2001. Special Issue
on Monitoring Systems and Tool Interoperability.

[14] F. Wolf and B. Mohr. Automatic performance analysis
of hybrid MPI/OpenMP applications. Journal of Sys-
tems Architecture, 49(10-11):421–439, 2003. Special
Issue “Evolutions in parallel distributed and network-
based processing”.

[15] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Effi-
cient Pattern Search in Large Traces through Succes-
sive Refinement. In Proc. of the European Conference
on Parallel Computing (Euro-Par), Pisa, Italy, August
- September 2004.

8


