Publications
A Jaccard Weights Kernel Leveraging Independent Thread Scheduling on GPUs,”
SBAC-PAD, Lyon, France, IEEE, 2018.
(237.68 KB)
“Batched Gauss-Jordan Elimination for Block-Jacobi Preconditioner Generation on GPUs,”
Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores, New York, NY, USA, ACM, pp. 1–10, February 2017.
DOI: 10.1145/3026937.3026940 (552.62 KB)
“Adaptive Precision in Block-Jacobi Preconditioning for Iterative Sparse Linear System Solvers,”
Concurrency and Computation: Practice and Experience, vol. 31, no. 6, pp. e4460, March 2019.
DOI: 10.1002/cpe.4460 (341.54 KB)
“Flexible Batched Sparse Matrix Vector Product on GPUs
, Denver, Colorado, ScalA'17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, November 2017.
(16.8 MB)
Efficiency of General Krylov Methods on GPUs – An Experimental Study,”
2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 683-691, May 2016.
DOI: 10.1109/IPDPSW.2016.45
“AI Benchmarking for Science: Efforts from the MLCommons Science Working Group,”
Lecture Notes in Computer Science, vol. 13387: Springer International Publishing, pp. 47 - 64, January 2023.
DOI: 10.1007/978-3-031-23220-610.1007/978-3-031-23220-6_4
“Adaptive Precision Solvers for Sparse Linear Systems,”
3rd International Workshop on Energy Efficient Supercomputing (E2SC '15), Austin, TX, ACM, November 2015.
“Experiences in autotuning matrix multiplication for energy minimization on GPUs,”
Concurrency in Computation: Practice and Experience, vol. 27, issue 17, pp. 5096-5113, December 2015.
DOI: 10.1002/cpe.3516 (1.98 MB)
“ParILUT - A New Parallel Threshold ILU,”
SIAM Journal on Scientific Computing, vol. 40, issue 4: SIAM, pp. C503–C519, July 2018.
DOI: 10.1137/16M1079506 (19.26 MB)
“Preconditioned Krylov Solvers on GPUs,”
Parallel Computing, June 2017.
DOI: 10.1016/j.parco.2017.05.006 (1.19 MB)
“Bringing High Performance Computing to Big Data Algorithms,”
Handbook of Big Data Technologies: Springer, 2017.
DOI: 10.1007/978-3-319-49340-4 (1.22 MB)
“Self-Adaptive Multiprecision Preconditioners on Multicore and Manycore Architectures,”
VECPAR 2014, Eugene, OR, June 2014.
(430.56 KB)
“Flexible Batched Sparse Matrix-Vector Product on GPUs,”
8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA '17), Denver, CO, ACM Press, November 2017.
DOI: http://dx.doi.org/10.1145/3148226.3148230 (583.4 KB)
“Then and Now: Improving Software Portability, Productivity, and 100× Performance,”
Computing in Science & Engineering, pp. 1 - 10, April 2024.
DOI: 10.1109/MCSE.2024.3387302
“GPU-Accelerated Asynchronous Error Correction for Mixed Precision Iterative Refinement,”
University of Tennessee Computer Science Technical Report UT-CS-11-690 (also Lawn 260), December 2011.
(662.98 KB)
“Towards Continuous Benchmarking,”
Platform for Advanced Scientific Computing Conference (PASC 2019), Zurich, Switzerland, ACM Press, June 2019.
DOI: 10.1145/3324989.3325719 (1.51 MB)
“Batched Generation of Incomplete Sparse Approximate Inverses on GPUs,”
Proceedings of the 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, pp. 49–56, November 2016.
DOI: 10.1109/ScalA.2016.11
“Solver Interface & Performance on Cori,”
Innovative Computing Laboratory Technical Report, no. ICL-UT-18-05: University of Tennessee, June 2018.
(188.05 KB)
“Block-asynchronous Multigrid Smoothers for GPU-accelerated Systems,”
ICCS 2012, Omaha, NE, June 2012.
(608.95 KB)
“Tuning Stationary Iterative Solvers for Fault Resilience,”
6th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA15), Austin, TX, ACM, November 2015.
(1.28 MB)
“Improving the Energy Efficiency of Sparse Linear System Solvers on Multicore and Manycore Systems,”
Philosophical Transactions of the Royal Society A -- Mathematical, Physical and Engineering Sciences, vol. 372, issue 2018, July 2014.
DOI: 10.1098/rsta.2013.0279 (779.57 KB)
“Domain Overlap for Iterative Sparse Triangular Solves on GPUs,”
Software for Exascale Computing - SPPEXA, vol. 113: Springer International Publishing, pp. 527–545, September 2016.
DOI: 10.1007/978-3-319-40528-5_24
“Random-Order Alternating Schwarz for Sparse Triangular Solves,”
2015 SIAM Conference on Applied Linear Algebra (SIAM LA), Atlanta, GA, SIAM, October 2015.
(1.53 MB)
“Variable-Size Batched Gauss-Huard for Block-Jacobi Preconditioning,”
International Conference on Computational Science (ICCS 2017), vol. 108, Zurich, Switzerland, Procedia Computer Science, pp. 1783-1792, June 2017.
DOI: 10.1016/j.procs.2017.05.186 (512.57 KB)
“Weighted Block-Asynchronous Relaxation for GPU-Accelerated Systems,”
SIAM Journal on Computing (submitted), March 2012.
(811.01 KB)
“Ginkgo: A Node-Level Sparse Linear Algebra Library for HPC (Poster)
, Houston, TX, 2020 Exascale Computing Project Annual Meeting, February 2020.
(699 KB)
Towards a New Peer Review Concept for Scientific Computing ensuring Technical Quality, Software Sustainability, and Result Reproducibility,”
Proceedings in Applied Mathematics and Mechanics, vol. 19, issue 1, November 2019.
DOI: 10.1002/pamm.201900490
“Iterative Sparse Triangular Solves for Preconditioning,”
EuroPar 2015, Vienna, Austria, Springer Berlin, August 2015.
DOI: 10.1007/978-3-662-48096-0_50 (322.36 KB)
“Block-asynchronous Multigrid Smoothers for GPU-accelerated Systems
, no. UT-CS-11-689, December 2011.
(608.95 KB)
Toward a Modular Precision Ecosystem for High-Performance Computing,”
The International Journal of High Performance Computing Applications, vol. 33, issue 6, pp. 1069-1078, November 2019.
DOI: 10.1177/1094342019846547 (1.93 MB)
“Implementing a Sparse Matrix Vector Product for the SELL-C/SELL-C-σ formats on NVIDIA GPUs,”
University of Tennessee Computer Science Technical Report, no. UT-EECS-14-727: University of Tennessee, April 2014.
(578.11 KB)
“Variable-Size Batched LU for Small Matrices and Its Integration into Block-Jacobi Preconditioning,”
46th International Conference on Parallel Processing (ICPP), Bristol, United Kingdom, IEEE, August 2017.
DOI: 10.1109/ICPP.2017.18
“A Block-Asynchronous Relaxation Method for Graphics Processing Units,”
Journal of Parallel and Distributed Computing, vol. 73, issue 12, pp. 1613–1626, December 2013.
DOI: http://dx.doi.org/10.1016/j.jpdc.2013.05.008 (1.08 MB)
“On the performance and energy efficiency of sparse linear algebra on GPUs,”
International Journal of High Performance Computing Applications, October 2016.
DOI: 10.1177/1094342016672081 (1.19 MB)
“Are we Doing the Right Thing? – A Critical Analysis of the Academic HPC Community,”
2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, IEEE, May 2019.
DOI: 10.1109/IPDPSW.2019.00122 (622.32 KB)
“High-Performance GPU Implementation of PageRank with Reduced Precision based on Mantissa Segmentation,”
8th Workshop on Irregular Applications: Architectures and Algorithms, 2018.
“Energy Efficiency and Performance Frontiers for Sparse Computations on GPU Supercomputers,”
Sixth International Workshop on Programming Models and Applications for Multicores and Manycores (PMAM '15), San Francisco, CA, ACM, February 2015.
DOI: 10.1145/2712386.2712387 (2.29 MB)
“Updating Incomplete Factorization Preconditioners for Model Order Reduction,”
Numerical Algorithms, vol. 73, issue 3, no. 3, pp. 611–630, February 2016.
DOI: 10.1007/s11075-016-0110-2 (565.34 KB)
“Acceleration of GPU-based Krylov solvers via Data Transfer Reduction,”
International Journal of High Performance Computing Applications, 2015.
“Accelerating the LOBPCG method on GPUs using a blocked Sparse Matrix Vector Product,”
Spring Simulation Multi-Conference 2015 (SpringSim'15), Alexandria, VA, SCS, April 2015.
(1.46 MB)
“MAGMA-sparse Interface Design Whitepaper,”
Innovative Computing Laboratory Technical Report, no. ICL-UT-17-05, September 2017.
(1.28 MB)
“Load-Balancing Sparse Matrix Vector Product Kernels on GPUs,”
ACM Transactions on Parallel Computing, vol. 7, issue 1, March 2020.
DOI: 10.1145/3380930 (5.67 MB)
“Accelerating the LOBPCG method on GPUs using a blocked Sparse Matrix Vector Product,”
University of Tennessee Computer Science Technical Report, no. UT-EECS-14-731: University of Tennessee, October 2014.
(1.83 MB)
“Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing,”
ACM Transactions on Mathematical Software, vol. 48, issue 12, pp. 1 - 33, March 2022.
DOI: 10.1145/3480935 (4.2 MB)
“Incomplete Sparse Approximate Inverses for Parallel Preconditioning,”
Parallel Computing, vol. 71, pp. 1–22, January 2018.
DOI: 10.1016/j.parco.2017.10.003 (1.24 MB)
“Fine-grained Bit-Flip Protection for Relaxation Methods,”
Journal of Computational Science, November 2016.
DOI: 10.1016/j.jocs.2016.11.013 (1.47 MB)
“Variable-Size Batched Gauss-Jordan Elimination for Block-Jacobi Preconditioning on Graphics Processors,”
Parallel Computing, vol. 81, pp. 131-146, January 2019.
DOI: 10.1016/j.parco.2017.12.006 (1.9 MB)
“Variable-Size Batched Condition Number Calculation on GPUs,”
SBAC-PAD, Lyon, France, September 2018.
(509.3 KB)
“Weighted Block-Asynchronous Iteration on GPU-Accelerated Systems,”
Tenth International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (Best Paper), Rhodes Island, Greece, August 2012.
(764.02 KB)
“Experiences in Autotuning Matrix Multiplication for Energy Minimization on GPUs,”
Concurrency and Computation: Practice and Experience, vol. 27, issue 17, pp. 5096 - 5113, Oct 12, 2015.
DOI: 10.1002/cpe.3516 (1.99 MB)
“