
ParILUT - A	New	Parallel	Threshold	ILU

MS87:	Innovative	Methods	 for	High	Performance	 Iterative	Solvers
Organized	by	Marc	Baboulin,	Takeshi	Fukaya,	Takeshi	Iwashita

Hartwig Anzt,	Edmond	Chow,	Jack	Dongarra

Motivation

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

A ⇡ L · U
nnz(L+ U) = nnz(A)

Motivation

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	in	a	highly	parallel	fashion?

A ⇡ L · U
nnz(L+ U) = nnz(A)

A ⇡ L · U
nnz(L+ U) = nnz(A)

Motivation

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	in	a	highly	parallel	fashion?

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in...

A = L · U

Ax = b

Ly = b) y) Ly = b) x

Motivation

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Ly = b) y) Ly = b) x

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern			.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	is	based	on	the
significance	of	elements	(e.g.	magnitude).
• Often	better	preconditioners	than	

level-based	ILU.
• Difficult	to	parallelize.

S

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	in	a	highly	parallel	fashion?

Motivation

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Ly = b) y) Ly = b) x

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern			.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	is	based	on	the
significance	of	elements	(e.g.	magnitude).
• Often	better	preconditioners	than	

level-based	ILU.
• Difficult	to	parallelize.

S

S

A

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	in	a	highly	parallel	fashion?

Motivation

Exact	LU	Factorization

• Decompose	system	matrix	into	product	 																		.
• Based	on	Gaussian	elimination.
• Triangular	solves	to	solve	a	system															:

• De-Facto	standard	for	solving	dense	problems.
• What	about	sparse?	Often	significant	fill-in…

A = L · U

Ax = b

Ly = b) y) Ly = b) x

Incomplete	LU	Factorization	(ILU)

• Focused	on	restricting	fill-in	to	a
specific	sparsity	pattern			.

• For	ILU(0),				is	the	sparsity	pattern	of				.
• Works	well	for	many	problems.
• Is	this	the	best	we	can	get	for	nonzero	count?

• Fill-in	in	threshold	ILU	(ILUT)	bases				on	the
significance	of	elements	(e.g.	magnitude).
• Often	better	preconditioners	than	

level-based	ILU.
• Difficult	to	parallelize.

S

S

A

S

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	in	a	highly	parallel	fashion?

Motivation

Rethink	the	overall	strategy!

• Use	a	parallel	iterative	process	to	generate	factors.

• The	preconditioner	should	have	a	moderate	number	of	nonzero	elements,
but	we	don’t	care	too	much	about	 intermediate	data.

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 																				is	a	“good”	approximation.

3. Maybe	change	some	locations	in	favor	of	locations	that	result	 in	a	better	preconditioner.
4. Repeat	until	the	locations	don’t	change	any	more.

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	in	a	highly	parallel	fashion?

Motivation

Rethink	the	overall	strategy!

• Use	a	parallel	iterative	process	to	generate	factors.

• The	preconditioner	should	have	a	moderate	number	of	nonzero	elements,
but	we	don’t	care	too	much	about	 intermediate	data.

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 																				is	a	“good”	approximation.

3. Maybe	change	some	locations	in	favor	of	locations	that	result	 in	a	better	preconditioner.
4. Repeat	until	the	locations	don’t	change	any	more.

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	in	a	highly	parallel	fashion?

Motivation

Rethink	the	overall	strategy!

• Use	a	parallel	iterative	process	to	generate	factors.

• The	preconditioner	should	have	a	moderate	number	of	nonzero	elements,
but	we	don’t	care	too	much	about	 intermediate	data.

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 																				is	a	“good”	approximation.

3. Maybe	change	some	locations	in	favor	of	locations	that	result	 in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

A ⇡ L · U
nnz(L+ U) = nnz(A)

We	are	looking	for	a	factorization-based	preconditioner	such	that																				.	
is	a	good	approximation	with	moderate	nonzero	count	(e.g.).

• Where	should	these	nonzero	elements	be	located?
• How	can	we	compute	the	preconditioner	in	a	highly	parallel	fashion?

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

AR = L U⇥ILU	residual -

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

Considerations

• This	is	an	optimization	problem…

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA
=

ILU	residual	
matrix	pattern

nnz(A� L · U)
nnz(L+ U)

Considerations

• This	is	an	optimization	problem	with																															equations
and																									variables.

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA
=

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

Considerations

• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

L,U

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

=

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA

R = A� L · U = 0|S

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

nnz(L+ U)equations
variablesnnz(L+ U)

S

nnz(A� L · U)
nnz(L+ U)

Considerations

• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

• This	is	the	underlying	idea	of	Edmond	Chow’s	parallel	ILU	algorithm1:	

• Converges	in	the	asymptotic	sense	towards	 incomplete	factors	
such	that	

L,U

F (L,U) =

(
1

ujj

⇣
aij �

Pj�1
k=1 likukj

⌘
, i > j

aij �
Pi�1

k=1 likukj , i j

1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

R = A� L · U = 0|S
S

nnz(A� L · U)
nnz(L+ U)

R = A� L · U = 0|S
L,U

Considerations

• This	is	an	optimization	problem	with																															equations	
and																									variables.

• We	may	want	to	compute	the	values	in										such	that																																										,
the	approximation	being	exact	in	the	 locations	included	in				,	but	not	outside!

• This	is	the	underlying	idea	of	Edmond	Chow’s	parallel	ILU	algorithm1:	

• We	may	not	need	high	accuracy	here,	
because	we	may	change	the	pattern	again…

• One	single	fixed-point	sweep.

L,U

F (L,U) =

(
1

ujj

⇣
aij �

Pj�1
k=1 likukj

⌘
, i > j

aij �
Pi�1

k=1 likukj , i j

1Chow	and	Patel.	“Fine-grained	Parallel	Incomplete	LU	Factorization”. In:	SIAM	J.	on	Sci.	Comp.	(2015).

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	 in	those	locations	such	that					

is	a	“good”	 approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

R = A� L · U = 0|S
S

nnz(A� L · U)
nnz(L+ U)

Considerations

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

Considerations

• Comparing	sparsity	patterns	extremely	difficult.
• Maybe	use	the	ILU	residual	as	convergence	check.

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A ⇡ L · U

A ⇡ L · U

Considerations

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.

A ⇡ L · U

Considerations

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A

1Saad.	“Iterative	Methods	for	Sparse	Linear	Systems,	2nd Edition”. (2003).

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	S1 = (S(A) [S(L0 · U0)) \ S(L0 + U0)
S0 = S(L0 + U0)

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ?

? ?
? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ?

?
?

? ?
?

1

CCCCCCA
=

0

BBBBBB@

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ? ? ?

? ? ?
? ? ? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ?

? ?
?

1

CCCCCCA
=

0

BBBBBB@

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

A ⇡ L · U

Considerations

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A

1Saad.	“Iterative	Methods	for	Sparse	Linear	Systems,	2nd Edition”. (2003).

S1 = (S(A) [S(L0 · U0)) \ S(L0 + U0)

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	

• Adding	all	these	locations	(level-fill!)	might	be	good	idea…

S0 = S(L0 + U0)

A ⇡ L · U

Considerations

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

A

1Saad.	“Iterative	Methods	for	Sparse	Linear	Systems,	2nd Edition”. (2003).

S1 = (S(A) [S(L0 · U0)) \ S(L0 + U0)

• The	sparsity	pattern	of					might	be	a	good	initial	start	for	nonzero	 locations.
• Then,	the	approximation	will	be	exact	for	all	locations

and	nonzero	 in	locations																																																																																1.	

• Adding	all	these	locations	(level-fill!)	might	be	good	idea, but	adding	these	
will	again	generate	new	nonzero	residuals

S0 = S(L0 + U0)

S2 = (S(A) [S(L1 · U1)) \ S(L1 + U1)

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?
? ? ?
? ?

? ? ?
? ? ? ?

1

CCCCCCA
�

0

BBBBBB@

?
? ?
? ? ?
? ? ? ?

? ? ?
? ? ? ? ? ?

1

CCCCCCA
⇥

0

BBBBBB@

? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ?

? ?
?

1

CCCCCCA
=

0

BBBBBB@

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

1

CCCCCCA

A ⇡ L · U

Considerations

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

• At	some	point	we	should	remove	some	locations	again,	e.g.	the	smallest	elements,
and	start	over	looking	at	locations																																	…R = A� Lk · Uk

A ⇡ L · U

Considerations

1. Select	a	set	of	nonzero	 locations.
2. Compute	values	in	those	 locations	such	that	 				

is	a	“good”	approximation.
3. Maybe	change	some	locations	 in	favor	of	

locations	that	result	in	a	better	preconditioner.
4. Repeat	until	the	preconditioner	quality	stagnates.

• At	some	point	we	should	remove	some	locations	again,	e.g.	the	smallest	elements,
and	start	over	looking	at	locations																																	…

• We	need	another	sweep,	then...
R = A� Lk · Uk

ParILUT

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.

• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?

ParILUT quality

0 2 4 6 8 10

Number of ParICT steps (2 sweeps per step)

0

10

20

30

40

50

60

70

80

C
G

 I
te

ra
tio

n
s

IC(0)
ICT
ParICT

Anisotropic	fluid	flow	problem
n:	741,	nz:	4,951

• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?

ParILUT quality

0 2 4 6 8 10

Number of ParICT steps (2 sweeps per step)

0

10

20

30

40

50

60

70

80

C
G

 I
te

ra
tio

n
s

IC(0)
ICT
ParICT

0 500 1000 1500

ILU(0) Pattern discrepancy ILUT

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

P
a

rI
C

T
 s

te
p

s
(2

 s
w

e
e

p
s

p
e

r
st

e
p

)

Anisotropic	fluid	flow	problem
n:	741,	nz:	4,951

• Top-level	solver	iterations	as	quality	metric.
• Few	sweeps	give	a	“better”	preconditioner	than	ILU(0).
• Better	than	ILUT?

ParILUT quality

• Pattern	stagnates	after	few	sweeps.
• Pattern	“more	like”	ILUT	than	ILU(0).

0 2 4 6 8 10

Number of ParICT steps (2 sweeps per step)

0

10

20

30

40

50

60

70

80

C
G

 I
te

ra
tio

n
s

IC(0)
ICT
ParICT

0 500 1000 1500

ILU(0) Pattern discrepancy ILUT

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

P
a

rI
C

T
 s

te
p

s
(2

 s
w

e
e

p
s

p
e

r
st

e
p

)

0 500 1000 1500

ILU(0) Pattern discrepancy ILUT

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

P
a

rI
C

T
 s

te
p

s
(2

 s
w

e
e

p
s

p
e

r
st

e
p

)

ParICT

Anisotropic	fluid	flow	problem
n:	741,	nz:	4,951

ParILUT

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.

ParILUT – a parallel	threshold	ILU	

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.

Parallelism	inside	the	building	blocks.

Scalability

0 10 20 30 40 50 60 70

Number of Threads

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

CSC CSR
Candidates
Residuals
ILU-norm
CSR CSC
Add
Sweep1
Select2Rm
Remove
Sweep2

10 20 30 40 50 60

Number of Threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
u
n
tim

e
 f
ra

ct
io

n

CSC CSR
Candidates
Residuals
ILU-norm
Select
Add
Sweeps
Remove

thermal2matrix	from	SuiteSparse,	RCM	ordering,	8	el/row.

Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

• Building	blocks	scale	with	15%	- 100%	parallel	efficiency.
• Transposition	and	sort	are	the	bottlenecks.
• Overall	speedup	~35x	when	using	68	KNL	cores.

Scalability

10 20 30 40 50 60

Number of Threads

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
u
n
tim

e
 f
ra

ct
io

n

CSC CSR
Candidates
Residuals
ILU-norm
Select
Add
Sweeps
Remove

0 10 20 30 40 50 60 70

Number of Threads

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p

CSC CSR
Candidates
Residuals
ILU-norm
CSR CSC
Add
Sweep1
Select2Rm
Remove
Sweep2

topopt120matrix	from	topology	optimization,	67	el/row.

Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

• Building	blocks	scale	with	15%	- 100%	parallel	efficiency.
• Dominated	by	candidate	search.
• Overall	speedup	~52x	when	using	68	KNL	cores.

Performance

Matrix Origin Rows Nonzeros Ratio SuperLU ParILUT ParICT

ani7	 2D	Anisotropic	Diffusion	 												 203,841 1,407,811 6.91 10.48	s	 0.45	s	 23.34 0.30	s	 35.16

apache2	 Suite	Sparse	Matrix	Collect.									 715,176 4,817,870 6.74 62.27	s	 1.24	s	 50.22 0.65	s	 95.37

cage11	 Suite	Sparse	Matrix	Collect.									 39,082 559,722 14.32 60.89	s 0.54	s	 112.56 --

jacobianMat9	 Fun3D	Fluid	 Flow	Problem													 90,708 5,047,042 55.64 153.84	s	 7.26	s	 21.19 --

thermal2	 Thermal	Problem	(Suite Sp.) 1,228,045 8,580,313 6.99 91.83	s	 1.23	s	 74.66 0.68	s	 134.25

tmt_sym Suite	Sparse	Matrix	Collect.									 726,713 5,080,961 6.97 53.42	s	 0.70	s	 76.21 0.41	s	 131.25

topopt120	 Geometry Optimization 132,300 8,802,544 66.53 44.22	s	 14.40	s	 3.07 8.24	s	 5.37

torso2	 Suite	Sparse	Matrix	Collect.									 115,967 1,033,473 8.91 10.78	s	 0.27	s	 39.92 --

venkat01	 Suite	Sparse	Matrix	Collect.									 62,424 1,717,792 27.52 8.53	s	 0.74	s	 11.54 --

Intel	Xeon Phi 7250	“Knights Landing”
68	cores	@1.40	GHz,	
16GB	MCDRAM	@490	GB/s

Runtime	of	5	ParILUT /	ParICT steps	and	speedup over	SuperLU ILUT*.

*We	thank	Sherry	Li	and	Meiyue Shao	for	technical	help	in	generating	the	performance	numbers.	

How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency

NVIDIA	P100	“Pascal”
4.7	TFLOP/s	DP
16GB	RAM	@732	GB/s

How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency

Tra
ns

Can
d

Res
Sor

t

Tra
ns

Add

Swee
p1

Thr
es

Rem
v

Swee
p2

-0.1

-0.05

0

0.05

0.1

N
V

ID
IA

 P
1
0
0
 G

P
U

 I
n
te

l H
a
sw

e
ll

2
0
c

thermal2matrix	from	SuiteSparse,	RCM	ordering,	8	el/row.

Ru
nt
im
e	
[s
]

How	about	GPUs?

• Fine-grained	parallelism
• High	bandwidth	 for	coalescent	reads
• No	deep	cache	hierarchy

• We	need	to	oversubscribe	cores	for	hiding	latency
topopt120matrix	from	topology	optimization,	67	el/row.

Tra
ns

C
an

d
R
es

Sor
t

Tra
ns

Add

Sw
ee

p1

Thr
es

R
em

v

Sw
ee

p2
-1

-0.5

0

0.5

1

N
V

ID
IA

 P
1
0
0
 G

P
U

 I
n
te

l H
a
sw

e
ll

2
0
c

Ru
nt
im
e	
[s
]

Is	this	a	future-oriented	algorithm?

Interleaving	fixed-point	sweeps	approximating	values	
with	pattern-changing	symbolic	routines.

Parallelism	inside	the	building	blocks.

Is	this	a	future-oriented	algorithm?

Bulk-Synchronous	 Algorithm!

…see John	Shalf on	Thursday…

Is	this	a	future-oriented	algorithm?

Bulk-Synchronous	 Algorithm!

Do	we	need	that?

Is	this	a	future-oriented	algorithm?

Dependencies

Bulk-Synchronous	 Algorithm!

Do	we	need	that?

Is	this	a	future-oriented	algorithm?

Bulk-Synchronous	 Algorithm!

Do	we	need	that?

Dependencies

Is	this	a	future-oriented	algorithm?

Bulk-Synchronous	 Algorithm!

Do	we	need	that?

Dependencies

Is	this	a	future-oriented	algorithm?

Bulk-Synchronous	 Algorithm!

Do	we	need	that?

Dependencies

Is	this	a	future-oriented	algorithm?

Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.

Is	this	a	future-oriented	algorithm?

Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.

Is	this	a	future-oriented	algorithm?

Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.

Is	this	a	future-oriented	algorithm?

Excellent	candidate	for	hybrid	hardware?
Asynchronous	 execution?

GPU?

Strong	dependency	 –we	can	not	start	before	finished.
Weak	dependency	 – if	we	start	before:	+/- few	nonzeros.

Is	this	a	future-oriented	algorithm?

• Hybrid	ParILUT version	utilizing	GPU	and	CPU,	
overlapping	communication	&	computation.

• Asynchronous version	relaxing	dependencies.

• Use	a	different	sparsity-pattern	generator:	
• Randomized?
• Machine	learning	techniques?

• Increasing	fill-in	towards	“full”	factorization.

• ParILUT routines	available	in	MAGMA-sparse	– they	will	be	in	Ginkgo.

This	research	was	sponsored	 by:

U.S.	Department	of	Energy	
ASCR	Award	Number	DE-SC0016513

Helmholtz	Impuls und	Vernetzungsfond
VH-NG-1241

Test	matrices

Convergence:	GMRES	iterations

Convergence:	CG	iterations

