
ECP PEEKS 
The PEEKS Project part of ECP's CLOVER umbrella project aimed at delivering production-ready high 
performance preconditioned Krylov solvers for Exascale Computing. For these solvers to efficiently 
exploit extreme-scale hardware, both the solver algorithms and the implementations must be redesigned 
to address challenges like extreme concurrency, complex memory hierarchies, costly data movement, 
and heterogeneous node architectures. One important aspect is the implementation-readiness for GPU 
accelerators that are expected to provide a significant performance share in Exascale Computing. One 
product of the PEEKS project is the Ginkgo software library, which addresses the efficient use of GPU 
technology.

PERFORMANCE
Ginkgo is specifically designed to efficiently 
leverage the compute power of the latest hardware 
architectures. The performance evaluations on an 
AMD RadeonVII GPU and an NVIDIA Volta V100 
GPU compares the performance of different 
sparse matrix vector kernels available in Ginkgo 
with counterparts of AMD’s hipSPARSE2 and 
NVIDIA’s cuSPARSE3 library. The performance 
profiles evaluate all test matrices available in the 
Suite Sparse matrix collection4.

PERFORMANCE RESULTS 
DATABASE
All performance results of benchmark runs are 
archived in a publicly accessible performance data 
repository5 based on git. Furthermore, the state of 
the machine, the environment, and even the 
compiled binaries are archived as GitLab artifacts. 
The intention is to not only provide users and 
developers with feedback about the performance 
of basic functionality, but also using performance 
data archiving to monitor the performance of 
central functionality over time to detect 
performance degradations.

DESIGN
Ginkgo1 is a C++ framework for sparse linear algebra. Using a universal linear operator abstraction, Ginkgo 
provides basic building blocks like the sparse matrix vector product for a variety of matrix formats, 
iterative solvers, and preconditioners. Ginkgo targets multi- and many-core systems, and currently 
features back-ends for AMD GPUs, NVIDIA GPUs, and OpenMP-supporting architectures. Runtime 
polymorphism is used to invoke the hardware-specific kernels, separating core functionality from these 
kernels allows for easy extension to other architectures.

SUSTAINABLE SOFTWARE 
DEVELOPMENT

Ginkgo is part of the extreme-scale Software Development 
Kit (xSDK6), and deploys the xSDK community policies for 
sustainable software development and high software 
quality. The source code of the Ginkgo library can be 
accessed in a public git repository on GitHub. To preserve 
intellectual property of new developments, the public 
repository is mirrored into a repository hosted on GitLab 
that features private branches. Code development in Ginkgo 
is realized in a Continuous Integration / Continuous 
Benchmarking framework. GitLab runners are used on a 
private server where Docker images are used to provide 
different execution environments in terms of Compilers and 
Third-Party Libraries. To test the correct execution, each 
functionality is complemented by unit tests. The unit 
testing is realized using the Google Test framework.

A NODE-LEVEL SPARSE LINEAR ALGEBRA LIBRARY FOR HPC

SPONSORED BY

REFERENCES 1] Ginkgo: https://ginkgo-project.github.io/

2] hipSPARSE: https://github.com/ROCmSoftwarePlatform/hipSPARSE

3] cuSPARSE: https://docs.nvidia.com/cuda/cusparse/index.html

4] Suite Sparse Matrix Collection: https://sparse.tamu.edu/

5] Ginkgo Performance Explorer: https://ginkgo-project.github.io/gpe/

6] xSDK: https://xsdk.info


