
Towards a Modular Precision Ecosystem
for High Performance Computing

Journal Title
XX(X):1–??
c©The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Hartwig Anzt1,2, Goran Flegar3, Thomas Grützmacher1 and Enrique S. Quintana-Ortı́4

Abstract
With the memory bandwidth of current computer architectures being significantly slower than the (floating point)
arithmetic performance, many scientific computations only leverage a fraction of the computational power in today’s
high-performance architectures. At the same time, memory operations are the primary energy consumer of modern
architectures, heavily impacting the resource cost of large-scale applications and the battery life of mobile devices.
This paper tackles this mismatch between floating point arithmetic throughput and memory bandwidth by advocating
a disruptive paradigm change with respect to how data is stored and processed in scientific applications. Concretely,
the goal is to radically decouple the data storage format from the processing format and, ultimately, design a “modular
precision ecosystem” that allows for more flexibility in terms of customized data access. For memory-bounded scientific
applications, dynamically adapting the memory precision to the numerical requirements allows for attractive resource
savings. In this paper, we demonstrate the potential of employing a modular precision ecosystem for the block-Jacobi
preconditioner and the Page Rank algorithm — two applications that are popular in the communities and at the same
characteristic representatives for the field of numerical linear algebra and data analytics, respectively.

Keywords
Modular Precision; Parallel Numerical Linear Algebra; Jacobi method; Page Rank; Conjugate Gradient; Multicore
Processors and GPUs

Introduction

The digital revolution is shaping the future through
breathtaking advances in all scientific fields, fueled by
new scientific computing algorithms and the increasing
computing power available in the complete range of digital
processing devices, from supercomputers to mobile devices.
The continuation of this trend, however, is challenged due
to the mismatch between the arithmetic performance of
processors in terms of floating point operations per second
(FLOPS) on the one side, and the memory performance
in terms of how fast data can be brought into the
computational elements on the other side. In consequence,
many applications nowadays utilize only a fraction of the
available compute power as they spend a significant part
of their time waiting for the required data, hitting the
so-called “memory wall” Wulf and McKee (1995). With
memory operations being a primary energy consumer, data
access is also pivotal in the resource balance of large-
scale applications and the battery life of mobile devices,
facing the “power wall” Dongarra et al. (2014); Duranton
et al. (2015); Lucas et al. (2014); Lavignon et al. (2013).
As a result, already today, many backbone algorithms for
scientific simulations, most big data applications, and many
deep learning technologies are memory-bound on virtually
all existing hardware architectures.

In general, the runtime and energy cost of accessing
data and executing arithmetic operations depend on the
precision of the operands. Typically, the quality of an
application output correlates to the accuracy of the precision
format used in the computations though some algorithms

can accommodate the use of lower than working precision
in parts of the underlying algorithm without impacting the
quality of the final result. For example, mixed precision and
iterative refinement, in the context of solving a system of
linear equations, is a well established technique (see, e.g.,
the references in Higham (1996)), which has been recently
re-visited due to the importance of the memory wall (see,
e.g., Buttari et al. (2007); Baboulin et al. (2009); Göddeke
et al. (2007) among several others). However, most of these
past research efforts are based on the paradigm of the floating
point format used to handle the data in memory being bonded
to the floating point format employed in the arithmetic
operations.

This paper advocates a disruptive paradigm change in how
scientific data is stored and processed for memory-bounded
scientific applications. Concretely, the goal is to radically
decouple the data storage format from the processing format.
In more detail, in order to leverage the heavily optimized
arithmetic kernels that are natively supported by hardware
as well as to benefit from high accuracy calculations, we
propose to employ the IEEE standard precision formats in the
arithmetic operations, but modify the policies which dictate

1Karlsruhe Institute of Technology, Karlsruhe, Germany
2University of Tennessee, Knoxville, USA
3Universitat Jaume I, Castellón, Spain
4Universitat Politècnica de València, Valencia, Spain

Corresponding author:
Hartwig Anzt, Karlsruher Institut für Technologie (KIT), Germany.
Email: hartwig.anzt@kit.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

how the data is handled in memory operations. In this paper,
we consider different strategies and aspects that arise from
the disruptive decoupling of the memory format:

• We expose how an “approximate building block” of a
complex algorithm can be stored in less than working
precision without impacting the algorithm output.
Precisely, we present a block-Jacobi preconditioner
that adapts the storage format of the Jacobi blocks on
an individual level to the numeric requirements of the
problem.

• We propose a strategy to split the significand of
data values into segments, and adapt the memory
access precision to the numeric requirements of the
problem. This enables fix-point methods to initially
start the iteration process with reduced precision
memory access, and to increment it over the algorithm
execution without duplicating data in memory or
invoking complex conversion routines.

• For the examples of the Jacobi method and
the PageRank algorithm we demonstrate how the
significand splitting improves the resource utilization
without impacting the quality of the algorithm output.

• We propose to complement the storage format
decoupling with a strategy that reduces the length
of the values’ exponents by identifying a reference
point and normalizing the values of the data set.
Exploiting clustering techniques or the properties of
many problems which accumulate most values in a
short range allows reducing the length of the exponent
after normalization and compacting the format used
for storing the values.

• We show that the values in an inverted diagonal block
of a block-Jacobi preconditioner are in most cases
of similar magnitude. We show that normalizing the
exponent, in this setting, can enable resource savings
beyond what is possible in an adaptive-precision
block-Jacobi employing IEEE standard precision
formats for storage.

We want to emphasize that this paper contributes by
providing an initial step towards a disruptive paradigm
change with respect to how data is stored and processed in
applications ranging from scientific simulations on high-end
supercomputers to mini-apps on smartphones, wearables and
IoT (internet-of-things) devices. The ultimate goal of this
research is to design a “modular precision ecosystem” that
offers efficient storage in a variety of customized precisions
while maintaining the hardware-supported IEEE standard
precision formats in the arithmetic operations. Developing
this ecosystem requires research and development along the
complete digital food chain, including the following:

– Theoretical research on the algorithmic side to
understand the impact of reduced precision data
access;

– Development of new algorithms that can better cope
with reading data in reduced accuracy;

– Deployment of a sustainable framework for cus-
tomized precision formats;

– Development and optimization of low-level kernels
for handling data in customized precision formats

on a wide range of hardware architectures, from
supercomputers to IoT and mobile devices;

– Research on compiler and operating system technol-
ogy to support the smooth transformation of existing
code into the modular precision ecosystem;

– and research on hardware technologies which natively
support customized precision formats.

The Path towards a Modular Precision
Ecosystem

The IEEE standard for floating point numbers
In digital processing, real numbers are generally represented
in binary floating point format, with a certain number of
bits used for storing significand, exponent, and sign of the
floating point number representation. Typically, the energy
and runtime cost of accessing data and performing arithmetic
operations correlates with the complexity of the precision
format Horowitz (2014): the more bits are involved, the
higher is the cost. The Institute of Electrical and Electronics
Engineers (IEEE) formulated a standard for floating point
arithmetic (IEEE 754 IEEE) that defines IEEE 64-bit double
precision (fp64), IEEE 32-bit single precision (fp32),
and IEEE 16-bit half precision (fp16), among others. For
scientific simulation codes and many applications in data
analytics, IEEE double precision is established as the de-
facto standard.

Mixed-precision IEEE floating point numbers
With the intention to reduce the resource footprint, the
idea of combining different precision formats has already
received some attention. This applies in particular to the
area of numerical linear algebra, where the quality of the
algorithms’ output usually depends on the condition number
of the problem and the floating point format that is employed
to represent the values. Numerical effects like rounding
errors result in a less accurate solution or even failure if a
“lower precision format” (in terms of less significand and
exponent bits) is used.

At the same time, running an iterative solver in
a lower precision format may allow it to generate a
solution approximation at lower resource cost: The iterations
converge to the (less accurate) attainable accuracy after fewer
iterations, and every iteration only accesses and operates
with reduced precision. As memory operations are the
primary energy consumer in digital processing Molka et al.
(2010), reducing the data transfer volume directly lowers the
energy footprint of the application. For applications where
the performance is bound by the memory bandwidth, the
execution time is also decreased.

Leveraging this property can enable resource savings even
when aiming for double precision solutions. The idea here
is to combine different precision formats inside a single
algorithm and use double precision only if needed. A popular
realization of this technique is mixed precision iterative
refinement (MPIR Buttari et al. (2007); Baboulin et al.
(2009); Strzodka and Göddeke (2006); Anzt et al. (2010)).
The idea in MPIR is to refine a solution approximation
by solving a residual equation in lower than working
precision. In many situations, double precision accuracy

Prepared using sagej.cls

Anzt, Flegar, Grützmacher and Quintana-Ortı́ 3

can be achieved Higham (1996). For example, Carson
et al. Carson and Higham (2017) suggest the use of an
incomplete factorization preconditioner computed in lower
precision inside an iterative F-GMRES framework, and the
authors even extend this approach by cascading multiple
formats of decreasing precision Carson and Higham (2018).

What these approaches all share is the tight coupling
between the arithmetic precision format, which is the format
used for the arithmetic operations, and the storage format.
While this seems to be a natural choice, it ignores the
hardware trend of the computational power growing at a
much faster pace than the memory bandwidth.

Decoupling IEEE storage format from IEEE
arithmetic
In recognition of the growing mismatch between arithmetic
and memory performance, in Anzt et al. (2019) we initially
suggest to decouple the arithmetic format from the memory
format. Concretely, we maintain IEEE fp64 in all arithmetic
operations, but employ a more compact lower precision
IEEE format (fp32 or fp16) for the memory operations.
Using the block-Jacobi preconditioner Anzt et al. (2018) as
a representative building block in scientific computing, we
estimate the energy and runtime savings this strategy renders
over using fp64 throughout the complete application.

In some detail, block-Jacobi preconditioners require
the inversion of small diagonal blocks of the system
matrix Hegland and Saylor (1992); Anzt et al. (2018), and
it is possible to optimize the memory format for each block
individually. Naturally, the use of customized precisions has
to be aligned with the algorithmic requirements, and the
block-specific optimization of the precision format has to
carefully consider the numerical effects against the objective
that the quality of the preconditioner is not diminished.
Precisely, in order to preserve the regularity of the block-
Jacobi preconditioner, the floating point format must be
chosen taking into account the condition number of each
block (see top of Figure 1 for a distribution of the condition
numbers of the distinct blocks for a set of test matrices Anzt
et al. (2019)). Additionally, the floating point format has to
be chosen taking into account the data range of the numerical
values to protect against overflow and underflow. This can be
particularly restrictive when considering only the the rigid
IEEE standard formats, where the number of bits assigned
to significand and exponent are pre-defined by the IEEE
standard. Taking both aspects, the data range and the matrix
conditioning, into account, the middle of Figure 1 visualizes
which fraction of the diagonal blocks of the block-Jacobi
matrix can be stored in lower than working precision, i.e.
in fp32 and fp16. Based on this analysis and the premise
that the data transfer time linearly depends on the data
volume, we can estimate the resource savings gained from
using an adaptive Jacobi preconditioner instead of a standard
(fp64) preconditioner inside a Conjugate Gradient iterative
solver Saad (2003); see bottom of Figure 1 Anzt et al. (2019).

Decoupling non-IEEE storage and IEEE
arithmetic
A conceptually different mixed precision strategy for
improving the resource footprint is presented in Anzt et al.

(2015), where an application dynamically modulates the
memory precision over the execution time. Concretely,
the distinct components in the solution vector of an
iterative solver are handled in different precision formats
which are adapted over the application execution to the
component’s convergence progress. For an iterative process,
the underlying idea is to start iterating all components
in a low precision format featuring few significand bits,
and then successively increase the precision as needed
for convergence to a solution with IEEE double precision
accuracy. This requires close interaction between the
application and the floating point format, in particular the
real-time adaption of the precision to the algorithmic needs.
Careful consideration of all the components’ dependencies
is required. Similar to the efforts in Anzt et al. (2019), the
arithmetic format is decoupled from the memory format,
and all arithmetic operations use fp64. The work in Anzt
et al. (2015) does not employ the IEEE standard precision
formats. Instead, as part of a more experimental research, it
uses artificial precisions that arise by arbitrarily truncating
the significand of the IEEE double precision format. The
elegance of this approach is that the number of exponent bits
remains unchanged, which virtually eliminates the danger
of overflow and underflow. Once read into the processing
units, the values are converted to fp64 by filling the omitted
significand bits with zeros. Considering the arithmetic
intensity of widespread-used algorithms, most processors are
over-provisioned for floating point operations. As a result,
using fp64 in the numerical operations rarely hurts the
algorithm’s overall performance. The memory precision is
then successively increased over the application execution to
enable fp64 accuracy.

We note that there exist some previous efforts that
combine a preconditioner stored in 32-bit precision in
memory with a solver that operates in full 64-bit
precision Tadano and Sakurai (2008); Gropp et al. (2000).
In this paper, we propose a generalization of these ideas
to include any reduced-precision customized format for
the preconditioner, including half and single precisions as
particular cases.

A Key Implementation Step: CPMS

An aspect not addressed in Anzt et al. (2015) is the question
of how data is stored in different precision formats in
memory. While this may seem an implementation detail,
the efficient access to the values with different accuracy is
performance-crucial, in particular on streaming architectures
such as GPUs.

On streaming graphics processors, each memory read
accesses 128 bytes of contiguous memory, and utilizing
only part of the data inevitably results in low performance.
The standard approach to mixed precision strategies is to
duplicate the data (in different precision formats) in memory.
However, this not only increases the memory footprint of the
algorithm, but also makes it impossible to efficiently access
different subsets of the values in different formats.

In Grützmacher and Anzt (2018) we propose the
“Customized Precision based on Mantissa Segmentation

Prepared using sagej.cls

4 Journal Title XX(X)

10 20 30 40 50 60

Test matrix [ID]

10
0

10
5

10
10

B
lo

c
k
 d

ia
g
o
n
a
l
c
o
n
d
it
io

n
in

g

10 20 30 40 50 60

Test matrix [ID]

0

0.2

0.4

0.6

0.8

1

B
lo

c
k
 d

is
tr

ib
u

ti
o

n

64 bit double precision

32-bit single precision

16-bit half precision

10 20 30 40 50 60

Test matrix [ID]

0

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 P

C
G

 e
n
e
rg

y
 b

a
la

n
c
e double prec. block-Jacobi

single prec. block-Jacobi

half prec. block-Jacobi

adaptive prec. block-Jacobi

Figure 1. Top: Condition number distribution of the diagonal block-inverses in a block-Jacobi preconditioner for a set of test
matrices from Suite Sparse sui (2018); Middle: Inverse blocks that can be stored in fp64, fp32, fp16 without loosing regularity;
Bottom: Energy balance of a preconditioned CG employing a fp32, fp16, or adaptive precision block-Jacobi in relation to using a
fp64 block-Jacobi.

mantissa	(52	bit)exponent	(11	bit)
sign

head	(32	bit) tail	(32	bit)

mantissa	(20	bit)

05163

(a)

heads tails

(b)

Figure 2. Splitting an IEEE double precision number into two segments we call “head” and “tail” (a). Storing the segmented data in
interleaved fashion (b).

(CPMS)” to address the challenge of efficiently storing and
accessing values in different precision formats. The strategy
is based on breaking up the hardware-supported IEEE

formats, and storing the segments separately, interleaved
with segments of other values. In Figure 2 we visualize
this strategy for a 2-segment splitting of the IEEE double

Prepared using sagej.cls

Anzt, Flegar, Grützmacher and Quintana-Ortı́ 5

precision format Grützmacher and Anzt (2018). For this
specific decomposition we refer to the two 32-bit segments
as the “head” and the “tail” of the customized precision
format. If an algorithm can work with the accuracy provided
by the head segment, no access to the second memory
block is necessary. Higher accuracy becomes available from
accessing additional significand segments.

As the CPMS strategy preserves the length of the
exponent, the first 32 bits include less significand bits than
the 32 bits of IEEE single precision IEEE. Hence, the
head of the 2-segment CPMS carries less accuracy than
the IEEE single precision format. The advantages of this
strategy are that 1) in specialized data access routines, no
exponent conversion is necessary; 2) preserving the length
of the exponent avoids overflow/underflow; 3) the data does
not have to be duplicated in memory, as reading additional
segments of the value will increase the values’ accuracy;
and 4) CPMS with one 64-bit segment is identical to
IEEE fp64. Preserving the exponent bits of the IEEE
standard precision format, the segmentation cannot turn a
valid number into “NaN” or “infinity,” as both are defined
by all exponent bits being filled with “1s” IEEE. Aside from
tracking the access information (“head-only” or “head-and-
tail”), the total memory footprint of CPMS remains identical
to that of the IEEE fp64 standard precision format.

Obviously, CPMS can be realized independently of the
format decoupling, but arithmetic operations in CPMS are
not natively supported by hardware. At the same time,
converting back to fp64 allows leveraging the vendor-tuned
kernels and, simultaneously, reduces the arithmetic rounding
effects. As a result, complementing CPMS with format
decoupling is usually the best choice.

As proof-of-concept, in Grützmacher and Anzt (2018)
we re-engineered the adaptive precision Jacobi Anzt et al.
(2015) using CPMS. For a finite difference discretization of
the Laplace problem using a mesh of 100×100 elements,
in Figure 3 we show how the memory format of the
distinct components changes over the application execution:
Each row corresponds to one unknown; in the white area,
components updates access the head only; in the blue area,
additional significand segments are needed to enable double-
precision convergence. Depending on the benefits and the
overhead introduced by using the adaptive precision Jacobi
in the CPMS framework, the solution approximation can be
generated faster than a standard Jacobi method in fp64, see
Figure 4 Grützmacher and Anzt (2018).

In Grutzmacher et al. (2018) we use the CPMS prototype
implementation to evaluate the potential of customized
precision in big data analytics. The PageRank algorithm is
re-engineered to start the power iteration with low accuracy
data access, and successively increase the access precision
to generate solutions with fp64 accuracy Grutzmacher
et al. (2018). The faster iterations using only a subset of
the significand segments reduce the overall execution time
compared to the reference implementation based on fp64,
see Figure 5 Grutzmacher et al. (2018).

While already this preliminary research based on
a prototype implementation of CPMS with segment
sizes fixed to 16 and 32 reveals attractive performance
improvements, we are convinced that the CPMS strategy

holds an enormous potential for a broad range of
applications.

We acknowledge that this section provides a general
description of the CPMS technique along with a few imple-
mentation details, but does not cover all implementation
aspects, such as, e.g., what is the cost of transforming the
data between reduced and full precision formats; how are
the caches affected by this approach; or who is responsible
for splitting the numbers and what is the optimal number
of segments. We believe that, though relevant, these aspects
can be addressed with different strategies, and thus refer to
future work realizing a production-ready implementation of
the modular precision ecosystem.

A Complementary Step in the Path: CPEN
The idea of decoupling the memory format from the
arithmetic format only brings benefits if the algorithm
and the data involved allow for reducing the complexity
of the format used in the memory operations without
impacting the quality of the algorithm output. The strategies
we considered so far are 1) using CPMS to gradually
increase the precision in fixed-point methods like Jacobi
iterations or the PageRank algorithm; and 2) storing the
data of “approximate building blocks” like the block-Jacobi
preconditioner in more compact IEEE standard precision
formats. In the case of the adaptive precision block-Jacobi
(see Figure 1), we were able to choose the precision format
for the distinct blocks individually. However, this required
analyzing the properties of the data such as value range
and conditioning. For each Jacobi block, the limits to
relaxing the memory precision format are 1) the regularity
of the block must be preserved; and 2) the data range
of the values must be covered by the precision format.
We notice that the first requirement has implications on
the length of the significand and the exponent, while
the second requirement primarily has implications on the
exponent, only. Using the IEEE standard precision formats,
the number of exponent bits is fixed by the specification, and
splitting the arithmetic precision format into segments like
in CPMS and considering the first (significand-truncated)
segment only results in a fixed number of exponent bits
independent of the splitting. At the same time, adapting
the number of exponent bits to the requirements can result
in additional resource savings. Significant benefits are in
particular available if the numeric values in the data are
all of similar magnitude, and it is possible to identify
a reference point the numbers are normalized to. In this
sense, a memory format which adapts significand and
exponent lengths to the requirements is not generic, but
data-dependent as it involves identifying a suitable reference
exponent and value normalization. Depending on the range
of the values involved in the dataset, the “Customized
Precision format Normalizing the Exponents to a reference
exponent (CPEN)” can offer attractive memory savings. An
appealing side-effect is that analyzing the values’ magnitude
and adapting the exponent length efficiently eliminates the
danger of over- and underflow.

In general, the efficient use of CPEN requires an initial
clustering step that splits the original dataset into subsets
(clusters) containing values of similar magnitude. The

Prepared using sagej.cls

6 Journal Title XX(X)

500 1000 1500 2000 2500 3000 3500

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

500 1000 1500 2000 2500 3000 3500

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iterations Iterations

V
e
ct

o
r

co
m

p
o
n
e
n
t

V
e
ct

o
r

co
m

p
o
n
e
n
t

Figure 3. Accuracy needs in adaptive Jacobi in a 2-segment (left) and a 4-segment (right) CPMS realization. The white-colored
area indicates only the head is accessed, the blue areas indicate additional significand segment reads.

0.5564

0.5623

0.7068

0.7079

0.765

0.7667

0.7231

0.9004

0.9472

0.9662

0.9671

0.9674

0.9995

0.8516

0.9176

1.084

1.049

1.041

1.024

1.138

1.111

1.081

1.072

1.059

1.191

1.069

1.038

1.024

1.015

1.009

1.242

1.263

1.182

1.13

1.108

1.088

1.072

1.249

1.16

1.118

1.095

1.078

1.3

1.269

1.16

1.112

1.086

1.069

1.279

1.223

1.136

1.096

1.074

1.06

1.306

1.208

1.124

1.086

1.065

1.067

1.304

1.139

1.078

1.049

1.032

1.006

0

0.2

0.4

0.6

0.8

1

1.2

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

 s
to

p
p

in
g

 t
h

re
s
h

o
ld

Number of Elements per row

 5 11 15 17 33 39 55 65 97 129 257

(a)

0.2816

0.2809

0.3445

0.285

0.4201

0.3555

0.2925

0.4372

0.5104

0.5779

0.6032

0.612

0.6412

0.5863

0.6337

0.7957

0.691

0.6885

0.507

0.8034

0.6868

0.8245

0.7193

0.7914

0.8399

0.9236

0.8852

0.8669

0.8286

0.7906

0.8916

0.937

0.9006

0.8769

0.8375

0.7951

0.9294

0.9394

0.8925

0.8686

0.8133

0.7778

0.9632

0.96

0.8984

0.8714

0.8119

0.7745

0.9484

0.9228

0.8686

0.8413

0.783

0.7483

0.9693

0.9089

0.8563

0.8268

0.7696

0.7357

0.9518

0.8505

0.8116

0.7654

0.72

0.6575

0

0.2

0.4

0.6

0.8

1

1.2

Number of Elements per row

 5 11 15 17 33 39 55 65 97 129 257

1e-2

1e-4

1e-6

1e-8

1e-10

1e-12

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

 s
to

p
p

in
g

 t
h

re
s
h

o
ld

(b)

Figure 4. Speed-up factors of the adaptive precision Jacobi in a 2-segment CPMS realization (left) and a 4-segment CPMS
realization (right), respectively.

0 0.5 1 1.5

Normalized PageRank execution time

Ada

Del

Eur

Bub

Rgg

USA

Std

edu

Brk

Ggl

16 bit access

precision change

32 bit access

precision change

48 bit access

precision change

64 bit access

Figure 5. Breakdown of the (normalized) PageRank execution time into the iteration sequences with different CPMS access and
in-place format conversion. Different network problems from Suite Sparse sui (2018) are addressed. The top bar is the runtime of
the reference PageRank in fp64, the middle bar uses 2-segment CPMS, the bottom bar uses 4-segment CPMS.

values in each cluster are then normalized to a subset-
specific reference exponent. Depending on the data structure,
splitting the original dataset into subsets can introduce some
overhead in terms of secondary structure information, which
makes the clustering step a data-dependent optimization.

Interestingly, many problems inherently consist of clusters
that accumulate values of similar magnitude. An example
of such a situation is the block-Jacobi preconditioner we
addressed in Figure 1: For each Jacobi block in any of the test
matrices considered, we analyze the exponents of the values,
and visualize the ranges of the distinct blocks in Figure 6.

Prepared using sagej.cls

Anzt, Flegar, Grützmacher and Quintana-Ortı́ 7

 12.5232 9 109

0 20 40 60 80 100
0

200

400

600

800

1000

N
u

m
b

e
r

o
f

o
c
c
u

ra
n

c
e

s

Figure 6. Histogram of the exponent ranges of the distinct Jacobi blocks in any of the matrices considered in adaptive precision
block-Jacobi. The median exponent range is colored in red, the average exponent range in blue, and the maximum exponent range
in green.

The histogram reveals that, on average, the magnitude of the
values in a block varies by less than 12 orders of magnitude,
with a median of only 9 orders of magnitude. This is much
smaller than what the exponent range of IEEE fp64 allows
for.

When the values in a block are of similar magnitude,
the clustering step becomes obsolete, and the exponent
normalization strategy of CPEN can be readily applied to
each diagonal block. Employing CPEN as memory format
in the worst case preserves the complexity of the IEEE
standard formats used in Figure 1, but will likely reduce
the formats complexity as a block-adapted exponent length
allows to fit more significand bits into a 16-bit or 32-bit
block. In consequence, more Jacobi blocks can use 16-bit
or 32-bit storage without impacting the blocks’ regularity. In
Figure 7 we illustrate this effect by visualizing the fraction
of blocks stored in 16-bit, 32-bit, and 64-bit CPEN values,
respectively. The advantages over employing the IEEE
standard precision formats can be derived by comparing
with Figure 1. We note that similar to the CPMS research,
we allow in this analysis only for 16-bit, 32-bit and 64-bit
formats as access functions to those are natively supported by
hardware. Non-standard hardware may support data access
in other data cardinalities, allowing for more fine-granular
optimization.

Storing more blocks in a slimmer format suggests
larger resource savings in the block-Jacobi preconditioner
application. We assess these benefits by visualizing in
Figure 8 the memory savings of the CPEN-based block-
Jacobi over the adaptive block-Jacobi preconditioner using
the IEEE standard precision formats for all memory
operations. The benefits are problem-dependent: for some
matrices, resizing the exponent to the requirements of
the blocks allows compressing the floating point numbers,
and CPEN succeeds in reducing the memory footprint
of the adaptive precision block-Jacobi beyond what the
IEEE formats allow for. We note that CPEN can also
increase the memory footprint: For cases where the exponent
reduction fails to reduce the size of the floating point format
storing the values, the reference exponent for each Jacobi
block introduces a moderate storage overhead. However,
for the data considered, this overhead is small compared
with the benefits CPEN renders for other problems.
CPEN providing at least the significand information of
the IEEE formats ensures that the top-level iterative
solver convergence generally remains unaffected (except for

rounding variation). Given the memory-bound nature of the
block-Jacobi preconditioner (and sparse linear algebra in
general), the memory reductions directly translate to runtime
and energy savings.

The attractive benefits CPEN renders to algorithms
storing part of the data in a less complex format
suggest that complementing the significand-segmentation
with a normalized exponent will allow for additional
resource savings when employing CPMS in fix-point based
algorithms. Furthermore, we are convinced that strategies
clustering values of similar magnitude will allow to exploit
CPEN for large data sets and, consequently, improve the
memory footprint, runtime, and energy consumption data
analytics.

Summary and Outlook
In this paper, we have proposed a disruptive paradigm
change with respect to how data is stored and processed
in scientific computing and community applications. As
an initial step, we have demonstrated how adapting the
format to store the blocks of a Jacobi preconditioner can
improve the resource optimization; we have shown how
splitting the significand into segments can allow fix-point
methods like Jacobi iterations or the PageRank algorithm to
adapt the data access accuracy to the numeric requirements;
and we have revealed how adapting the length of the
exponents to the data range can help in reducing the memory
footprint and therewith reduce the resource consumption
of memory-bounded algorithms. As part of future work,
we plan to develop a “modular precision ecosystem”
that offers efficient storage in a variety of customized
precisions while maintaining the hardware-supported IEEE
standard precision formats in the arithmetic operations. This
ecosystem will allow a wide range of algorithms from
numerical linear algebra over data analytics and machine
learning to benefit from storage format decoupling and
precision optimization.

Acknowledgments
This work was supported by the “Impuls und Vernetzungs-
fond” of the Helmholtz Association under grant VH-NG-
1241. G. Flegar and E. S. Quintana-Ortı́ were supported by
project TIN2017-82972-R of the MINECO and FEDER and
the H2020 EU FETHPC Project 732631 “OPRECOMP”.

Prepared using sagej.cls

8 Journal Title XX(X)

10 20 30 40 50 60

Test matrix [ID]

0

0.2

0.4

0.6

0.8

1

B
lo

c
k
 d

is
tr

ib
u

ti
o

n

64 bit

32 bit

16 bit

Figure 7. Fraction of the diagonal blocks stored in 16 bits, 32 bits or 64 bits CPEN. For each block, a suitable reference exponent
is identified and the numeric values are stored relative to this exponent. The significand bits are reduced if appropriate to fit into a
more compact format.

10 20 30 40 50 60

Test matrix [ID]

-10

0

10

20

30

40

50

60

M
e
m

o
ry

 r
e
d
u
c
ti
o
n
 [
%

]

Figure 8. Memory savings employing CPEN instead of the IEEE standard precision formats inside an adaptive precision
block-Jacobi preconditioner.

References

(2018) Suitesparse matrix collection. https://sparse.tamu.
edu. Accessed in April 2018.

Anzt H, Dongarra J, Flegar G, Higham NJ and Quintana-Ortı́
ES (2019) Adaptive precision in block-Jacobi preconditioning
for iterative sparse linear system solvers. Concurrency and
Computation: Practice and Experience 31(6). DOI:10.1002/
cpe.4460. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/cpe.4460.
Anzt H, Dongarra J, Flegar G and Quintana-Ortı́ ES (2018)

Variable-size batched Gauss–Jordan elimination for block-
Jacobi preconditioning on graphics processors. Parallel
Computing DOI:https://doi.org/10.1016/j.parco.2017.12.006.
URL http://www.sciencedirect.com/science/

article/pii/S0167819117302107.
Anzt H, Dongarra J and Quintana-Ortı́ ES (2015) Adaptive

precision solvers for sparse linear systems. In: Proceedings
of the 3rd International Workshop on Energy Efficient
Supercomputing, E2SC ’15. New York, NY, USA: ACM.
ISBN 978-1-4503-3994-0, pp. 2:1–2:10. DOI:10.1145/
2834800.2834802. URL http://doi.acm.org/10.

1145/2834800.2834802.
Anzt H, Heuveline V and Rocker B (2010) Mixed precision error

correction methods for linear systems Convergence analysis
based on Krylov subspace methods. In: Jonasson K (ed.) PARA
2010, Part II, LNCS 7134. Springer, Heidelberg, pp. 237–248.
DOI:10.1007/978-3-642-28145-7$\ $24.

Baboulin M, Buttari A, Dongarra JJ, Langou J, Langou J, Luszczek
P, Kurzak J and Tomov S (2009) Accelerating Scientific
Computations with Mixed Precision Algorithms. Computer

Physics Communications 180(12): 2526–2533.
Buttari A, Dongarra JJ, Langou J, Langou J, Luszczek P and Kurzak

J (2007) Mixed precision iterative refinement techniques for the
solution of dense linear systems. Int. J. of High Perf. Comp. &
Appl. 21(4): 457–486.

Carson E and Higham NJ (2017) A new analysis of iterative
refinement and its application to accurate solution of ill-
conditioned sparse linear systems. SIAM J. Scientific
Computing 39(6): A2834–A2856. DOI:10.1137/17M1122918.

Carson E and Higham NJ (2018) Accelerating the solution of linear
systems by iterative refinement in three precisions. SIAM
J. Scientific Computing 40(2): A817–A847. DOI:10.1137/
17M1140819.

Dongarra J et al. (2014) Applied mathematics research for
exascale computing. Technical report, U.S. Dept. of Energy,
Office of Science, Advanced Scientific Computing Research
Program. https://science.energy.gov/˜/media/
ascr/pdf/research/am/docs/EMWGreport.pdf.

Duranton M et al. (2015) HiPEAC vision 2015. https://www.
hipeac.org/publications/vision/.

Göddeke D, Strzodka R and Turek S (2007) Performance and
accuracy of hardware–oriented native–, emulated– and mixed–
precision solvers in FEM simulations. Int. J. of Parallel,
Emergent and Distributed Systems 22(4): 221–256.

Gropp WD, Kaushik DK, Keyes DE and Smith BF (2000)
Latency, bandwidth, and concurrent issue limitations in high-
performance cfd. DOI:10.1016/B978-008043944-0/50783-6.

Grützmacher T and Anzt H (2018) A modular precision format for
decoupling arithmetic format and storage format. In: Lecture
Notes in Computer Science, 16th Int. Workshop on Algorithms,
Models and Tools for Parallel Computing on Heterogeneous

Prepared using sagej.cls

https://sparse.tamu.edu
https://sparse.tamu.edu
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4460
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4460
http://www.sciencedirect.com/science/article/pii/S0167819117302107
http://www.sciencedirect.com/science/article/pii/S0167819117302107
http://doi.acm.org/10.1145/2834800.2834802
http://doi.acm.org/10.1145/2834800.2834802
https://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf
https://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf
https://www.hipeac.org/publications/vision/
https://www.hipeac.org/publications/vision/

Anzt, Flegar, Grützmacher and Quintana-Ortı́ 9

Platforms – HeteroPar’18. Springer. To appear.
Grutzmacher T, Anzt H, Quintana-Orti ES and Scheidegger F

(2018) High-performance GPU implementation of PageRank
with reduced precision based on mantissa segmentation. In:
Proceedings of the 8th Workshop on Irregular Applications:
Architecture and Algorithms (IA3). pp. 61–68.

Hegland M and Saylor PE (1992) Block-Jacobi preconditioning
of the Conjugate Gradient method on a vector processor.
International Journal of Computer Mathematics 44(1-4): 71–
89. DOI:10.1080/00207169208804096. URL https://

doi.org/10.1080/00207169208804096.
Higham NJ (1996) Accuracy and Stability of Numerical Algorithms.

ISBN 0-89871-355-2.
Horowitz M (2014) Computing’s energy problem (and what we can

do about it). In: 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC). pp. 10–14.
DOI:10.1109/ISSCC.2014.6757323.

IEEE (2008) IEEE standard for floating-point arithmetic. IEEE Std
754-2008 : 1–70DOI:10.1109/IEEESTD.2008.4610935.

Lavignon JF et al. (2013) ETP4HPC strategic research agenda
achieving HPC leadership in Europe. http://www.

etp4hpc.eu/.
Lucas R et al. (2014) Top ten Exascale research challenges. http:

//science.energy.gov/˜/media/ascr/ascac/

pdf/meetings/20140210/Top10reportFEB14.

pdf.
Molka D, Hackenberg D, Schöne R and Müller MS (2010)

Characterizing the energy consumption of data transfers and
arithmetic operations on x86-64 processors. In: International
Green Computing Conference 2010, Chicago, IL, USA, 15-
18 August 2010. pp. 123–133. DOI:10.1109/GREENCOMP.
2010.5598316. URL https://doi.org/10.1109/

GREENCOMP.2010.5598316.
Saad Y (2003) Iterative Methods for Sparse Linear Systems. 2nd

edition. SIAM. ISBN 0898715342.
Strzodka R and Göddeke D (2006) Pipelined mixed precision

algorithms on FPGAs for fast and accurate PDE solvers from
low precision components. In: IEEE Proceedings on Field–
Programmable Custom Computing Machines (FCCM 2006).
IEEE Computer Society Press.

Tadano H and Sakurai T (2008) On single precision preconditioners
for krylov subspace iterative methods. In: Lirkov I, Margenov
S and Waśniewski J (eds.) Large-Scale Scientific Computing.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-
540-78827-0, pp. 721–728.

Wulf WA and McKee SA (1995) Hitting the memory wall:
Implications of the obvious. SIGARCH Comput. Archit. News
23(1): 20–24. DOI:10.1145/216585.216588. URL http:

//doi.acm.org/10.1145/216585.216588.

Prepared using sagej.cls

https://doi.org/10.1080/00207169208804096
https://doi.org/10.1080/00207169208804096
http://www.etp4hpc.eu/
http://www.etp4hpc.eu/
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
https://doi.org/10.1109/GREENCOMP.2010.5598316
https://doi.org/10.1109/GREENCOMP.2010.5598316
http://doi.acm.org/10.1145/216585.216588
http://doi.acm.org/10.1145/216585.216588

10 Journal Title XX(X)

Author biographies

Hartwig Anzt is a Helmholtz-
Young-Investigator Group leader at
the Steinbuch Centre for Computing
at the Karlsruhe Institute of Technol-
ogy. He obtained his PhD in Math-
ematics at the Karlsruhe Institute of
Technology, and afterwards joined
Jack Dongarra’s Innovative Comput-
ing Lab at the University of Ten-
nessee in 2013. Since 2015 he also

holds a Senior Research Scientist position at the University
of Tennessee. Hartwig Anzt has a strong background in
numerical mathematics, specializes in iterative methods and
preconditioning techniques for the next generation hardware
architectures. Hartwig Anzt has a long track record of high-
quality software development. He is author of the MAGMA-
sparse open source software package managing lead and
developer of the Ginkgo numerical linear algebra library,
and part of the US Exascale computing project delivering
production-ready numerical linear algebra libraries.

Goran Flegar is a PhD candidate
in the High Performance Computing
& Architectures group at the Jaume
I University. His research interests
include sparse linear algebra, acceler-
ator computing and software design.
He holds a bachelor’s degree in math-
ematics and a master’s degree in com-

puter science and mathematics from the University of
Zagreb. He is also one of the main developers of Ginkgo,
a modern C++ library for the iterative solution of sparse
linear systems, via Krylov subspace methods, on multicore
architectures.

Thomas Grützmacher is a PhD
researcher at the Karlsruhe Institute
of Technology. He received a bach-
elor’s degree from the KIT in 2015
with emphasis on software develop-
ment for mobile computing and IoT.
In 2018 he completed his Master’s
studies with Emphasis on High Per-

formance Computing and unconventional precision formats.
Thomas Grützmacher’s research focus is designing a modu-
lar precision ecosystem. He also is among the core developer
team of the Ginkgo open source software.

Enrique S. Quintana-Ortı́ received
the bachelor and Ph.D. degrees in
computer sciences from the Univer-
sidad Politecnica de Valencia, Spain,
in 1992 and 1996, respectively. Cur-
rently, he is a Professor in Com-
puter Architecture in the Universi-
tat Politecnica de Valencia, Spain.
He has published more than 300
papers in international conferences

and journals, and has contributed to software libraries like
PLiC/SLICOT, MAGMA, FLARE, BLIS and libflame for
control theory and parallel linear algebra. He has also been
member of the program committee for around 100 interna-
tional conferences. In 2008 Enrique received an NVIDIA
professor partnership award for his contributions to the
acceleration of dense linear algebra kernels on graphics
processors, and he also received two technical awards from
NASA for his contributions to fault-tolerant dense linear
algebra libraries for space vehicles. Recently, he has partic-
ipated/participates in EU projects on parallel programming,
such as TEXT, INTERTWinE, and energy efficiency such as
EXA2GREEN and OPRECOMP. His current research inter-
ests include parallel programming, linear algebra, energy
consumption, transprecision computing and bioinformatics
as well as advanced architectures and hardware accelerators.

Prepared using sagej.cls

	Introduction
	The Path towards a Modular Precision Ecosystem
	The IEEE standard for floating point numbers
	Mixed-precision IEEE floating point numbers
	Decoupling IEEE storage format from IEEE arithmetic
	Decoupling non-IEEE storage and IEEE arithmetic

	A Key Implementation Step: CPMS
	A Complementary Step in the Path: CPEN
	Summary and Outlook

