ScalA'17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems November 13, 2017

Hartwig Anzt, Gary Collins, Jack Dongarra, Goran Flegar, Enrique, S. Quintana-Orti

FNNFSSFF

 $\mathsf{Input} A, x, y \quad \mathsf{Output} \ y = A \cdot x$

- Matrix A contains only few nonzero elements.
- Storing all entries results in large overhead (memory & computation).

 $\mathsf{Input} A, x, y \quad \mathsf{Output} \ y = A \cdot x$

- Matrix A contains only few nonzero elements.
- Storing all entries results in large overhead (memory & computation).
- Idea: Store only nonzero elements [nz] explicitly.

$$A = \begin{pmatrix} 5.4 & 1.1 & 0 & 0 & 0 & 0 \\ 2.2 & 8.3 & 0 & 3.7 & 1.3 & 3.8 \\ 0 & 0 & 4.2 & 0 & 0 & 0 \\ 5.4 & 0 & 0 & 9.2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8.1 \end{pmatrix}$$

 $value = \begin{bmatrix} 5.4 & 1.1 & 2.2 & 8.3 & 3.7 & 1.3 & 3.8 & 4.2 & 5.4 & 9.2 & 1.1 & 8.1 \end{bmatrix} \quad \text{Value}$

 $\mathsf{Input} A, x, y \quad \mathsf{Output} \ y = A \cdot x$

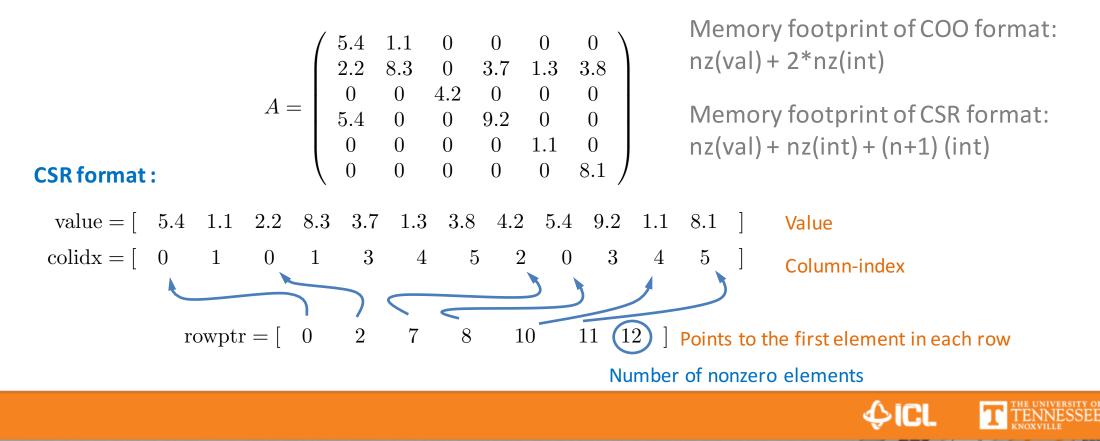
- Matrix A contains only few nonzero elements.
- Storing all entries results in large overhead (memory & computation).
- Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

	$A = \left(\right)$	$\begin{array}{cccc} 5.4 & 1.1 \\ 2.2 & 8.3 \\ 0 & 0 \\ 5.4 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccc} 0 & 0 \\ 0 & 3.7 \\ 4.2 & 0 \\ 0 & 9.2 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccc} 0 & 0 \\ 1.3 & 3.8 \\ 0 & 0 \\ 0 & 0 \\ 1.1 & 0 \\ 0 & 8.1 \end{array}$			y footprint of COO format: + 2*nz(int)
COO format :	Υ	0 0	0 0	0 8.1	/		
value = $\begin{bmatrix} 5.4 & 1.1 \end{bmatrix}$						-	
$colidx = \begin{bmatrix} 0 & 1 \end{bmatrix}$	0 1	3 4	5	2 0 3	4	5]	Column-index
$rowidx = \begin{bmatrix} 0 & 0 \end{bmatrix}$	1 1	1 1	1	2 3 3	4	5	Row-index

- Matrix A contains only few nonzero elements.
- Storing all entries results in large overhead (memory & computation).
- Idea: Store only nonzero elements [nz] explicitly.

Need to also store location of nonzero elements!

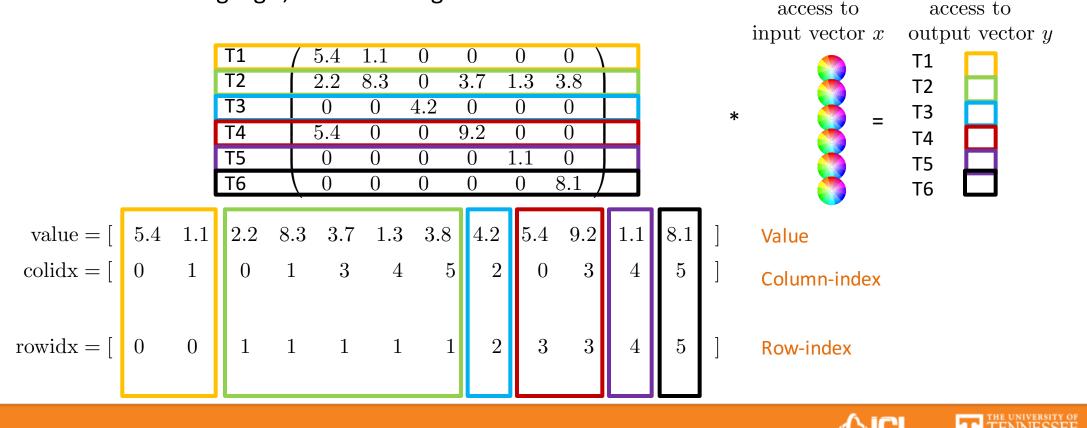


How to parallelize this?

			<i>A</i> =	=	$5.4 \\ 2.2 \\ 0 \\ 5.4 \\ 0 \\ 0 \\ 0$	$ \begin{array}{r} 1.1 \\ 8.3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 4.2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 3.7 \\ 0 \\ 9.2 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1.3 \\ 0 \\ 0 \\ 1.1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 3.8 \\ 0 \\ 0 \\ 0 \\ 8.1 \end{array} \right)$				
value = $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$			2.2	8.3	3.7	1.3	3.8	4.2	5.4	9.2	1.1			
colidx = [0	1	0	1	3	4	5	2	0	3	4	5	J	Column-index
rowidx = [0	0	1	1	1	1	1	2	3	3	4	5]	Row-index

How to parallelize this?

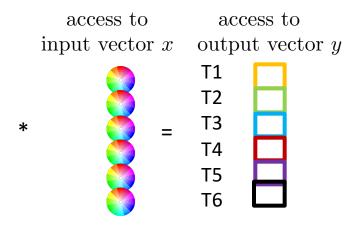
- Parallelize by rows:
 - Every "thread" handles the computation of one sum in local memory.
 - Significant workload imbalance!
 - Need branching logic, branch divergence on vector machines.



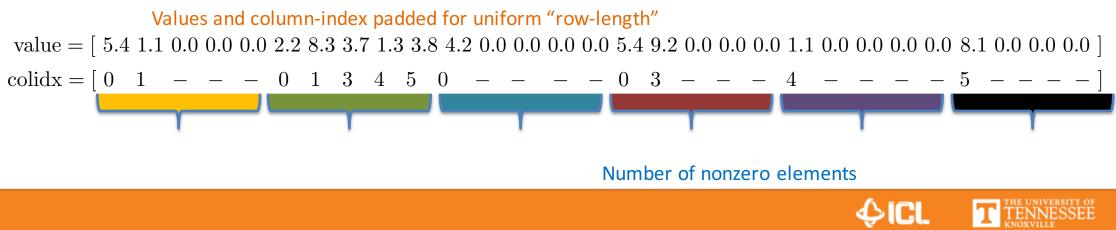
How to parallelize this?

- Parallelize by rows:
 - Every "thread" handles the computation of one sum in local memory.
 - Balanced workload.
 - Can result in significant overhead for unbalanced problems.

T1	/ 5.4	1.1	0	0	0	0	
T2	2.2	8.3	0	3.7	1.3	3.8	
Т3	0	0	4.2	0	0	0	
T4	5.4	0	0	9.2	0	0	
T5	0	0	0	0	1.1	0	
T6	$\sqrt{0}$	0	0	0	0	8.1	7

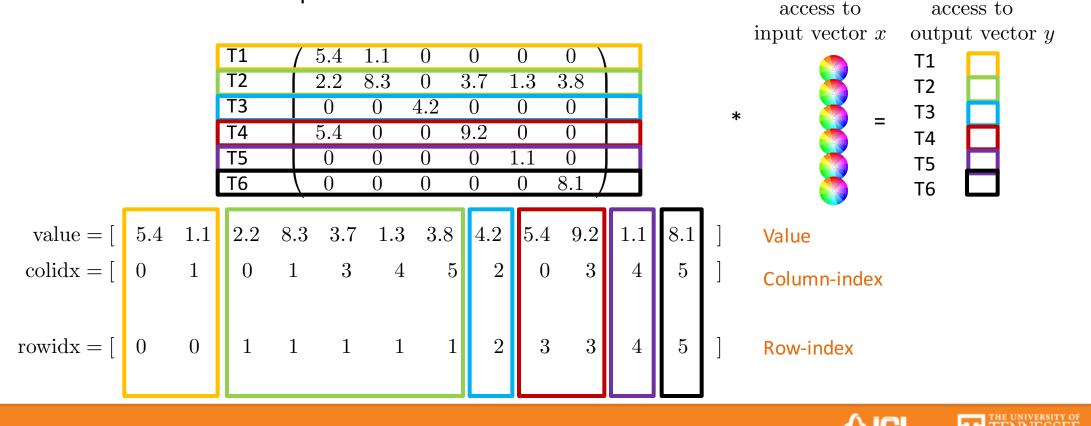


ELL format :



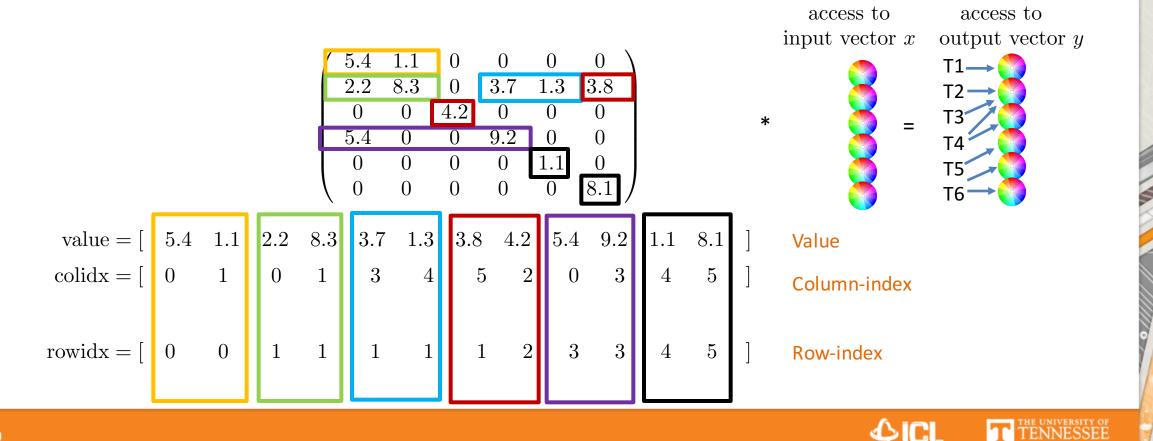
How to parallelize this?

- Parallelize by rows:
 - Every "thread" handles the computation of one sum in local memory.
 - Significant workload imbalance!
 - "Ordered" access to input vector x.



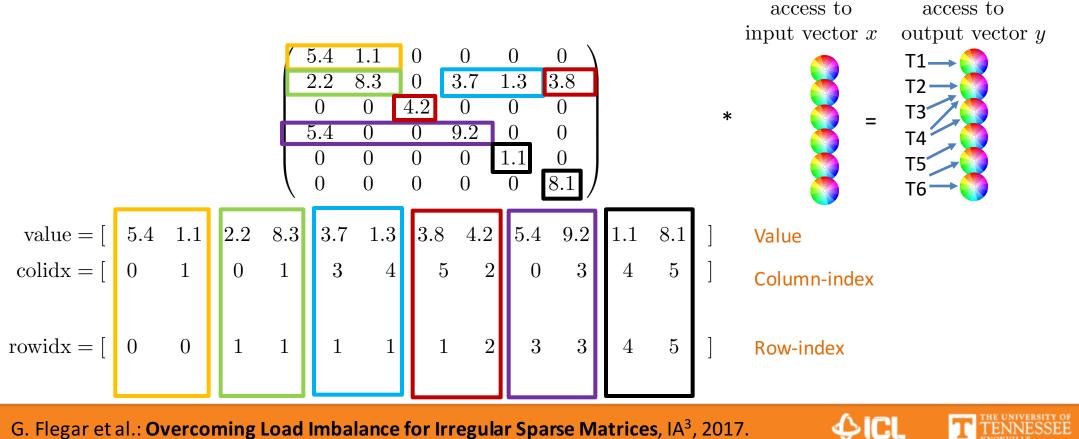
How to parallelize this?

- Parallelize by elements:
 - Balanced workload.
 - Partial sums need synchronization: Write conflicts!



How to parallelize this?

- Parallelize by elements: ۲
 - Balanced workload.
 - Partial sums need synchronization: Write conflicts! •



G. Flegar et al.: Overcoming Load Imbalance for Irregular Sparse Matrices, IA³, 2017. 11

"Different kernels optimal for different problem classes"

CSR

- small memory footprint
- Needs some logic for row-parallel processing

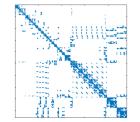
ELL

zero-padding allows for efficient SIMD execution

Efficient for balanced matrices

COO

• can compensate workload imbalance for irregular patterns



• • •

"Different kernels optimal for different problem classes"

CSR

- small memory footprint
- Needs some logic for row-parallel processing

ELL

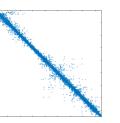
zero-padding allows for efficient SIMD execution

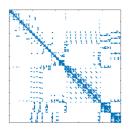
Efficient for balanced matrices

COO

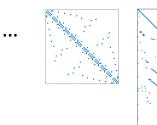
• • •

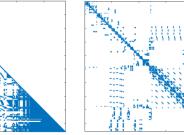
• can compensate workload imbalance for irregular patterns

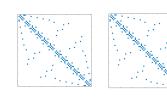


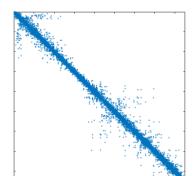


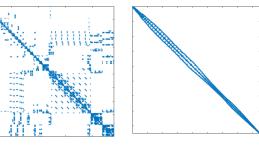
• What if we process many different matrices at a time? (Assume they are all small...)





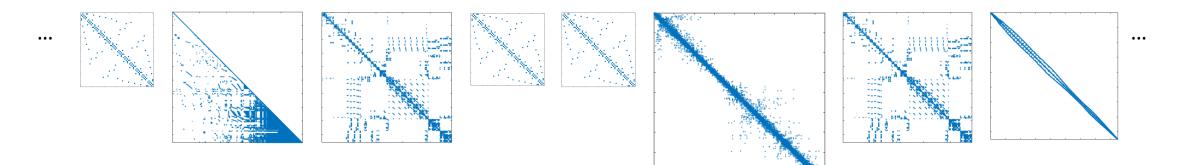






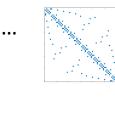
•••

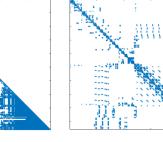
• What if we process many different matrices at a time? (Assume they are all small...)

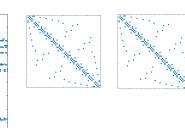


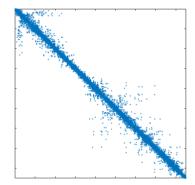
- Design a **batched SpMV kernel**.
 - Process a large number of data-independent problems in parallel.

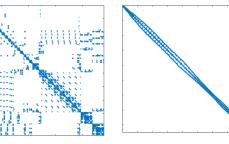
• What if we process many different matrices at a time? (Assume they are all small...)





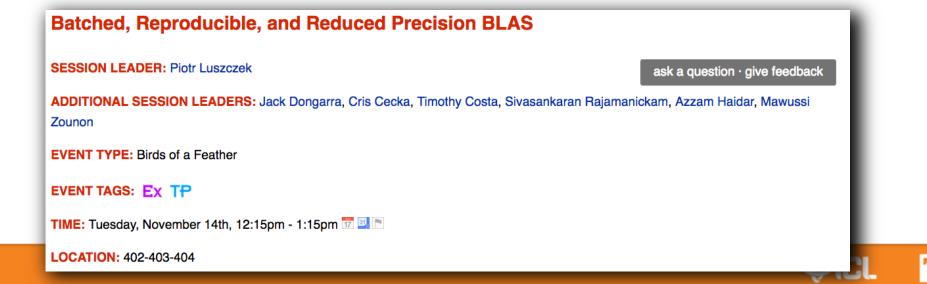




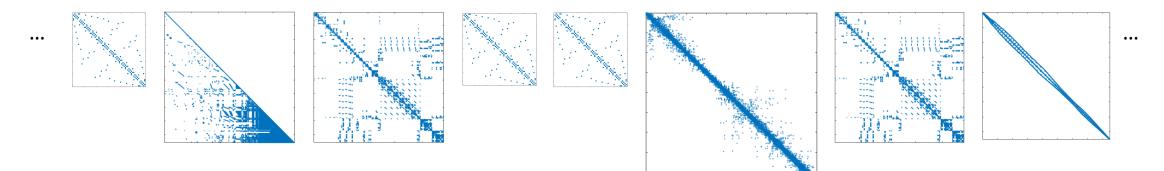


...

- Design a batched SpMV kernel.
 - Process a large number of data-independent problems in parallel.



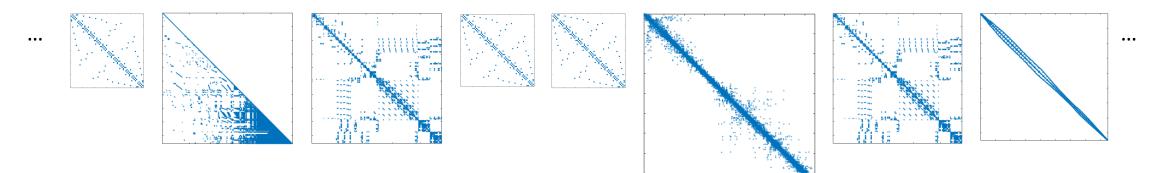
• What if we process many different matrices at a time? (Assume they are all small...)



• Design a **batched SpMV kernel**.

- Process a large number of data-independent problems in parallel.
- Are the problems
 - Same Size?
 - Same number of nonzeros overall?
 - Same number of nonzeros in every row?
 - Same sparsity pattern?

• What if we process many different matrices at a time? (Assume they are all small...)



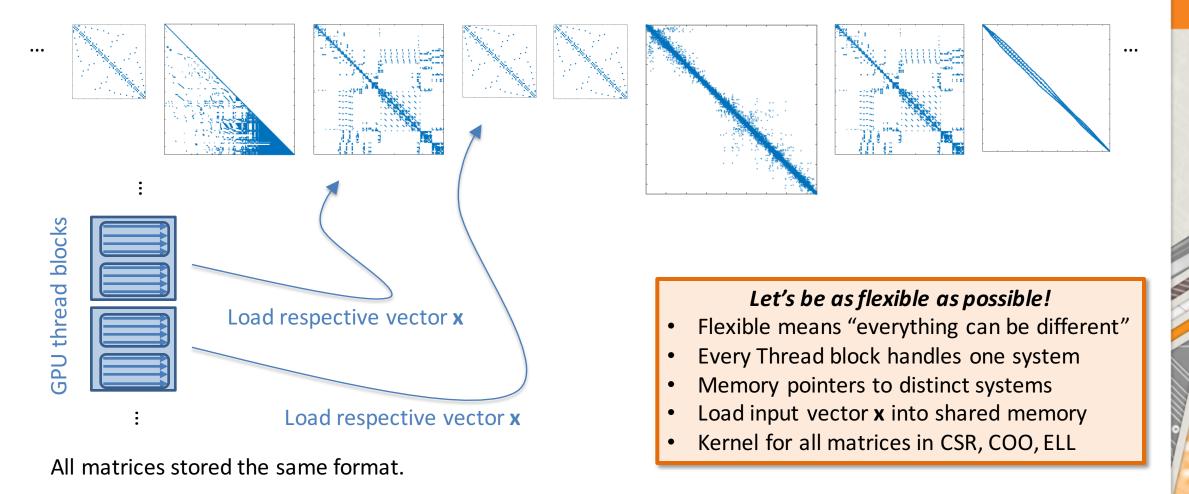
• Design a batched SpMV kernel.

- Process a large number of data-independent problems in parallel.
- Are the problems
 - Same Size?
 - Same number of nonzeros overall?
 - Same number of nonzeros in every row?
 - Same sparsity pattern?

Let's be as flexible as possible!

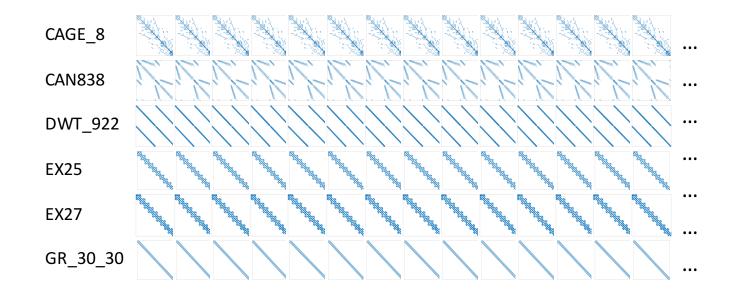
- Flexible means "everything can be different"
- Every Thread block handles one system
- Memory pointers to distinct systems
- Load input vector x into shared memory
- Kernel for all matrices in CSR, COO, ELL

• What if we process many different matrices at a time? (Assume they are all small...)



First experiment:

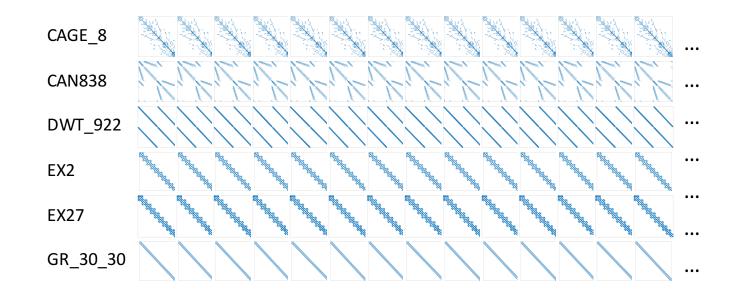
- Use different batched SpMV kernels (COO, CSR, ELL ...)
- A batch consisting of the same matrices (*homogeneous batch*)



NVIDIA P100 GPU 56 SMX, 5.3 TF DP 16 GB @ 768GB/s

First experiment:

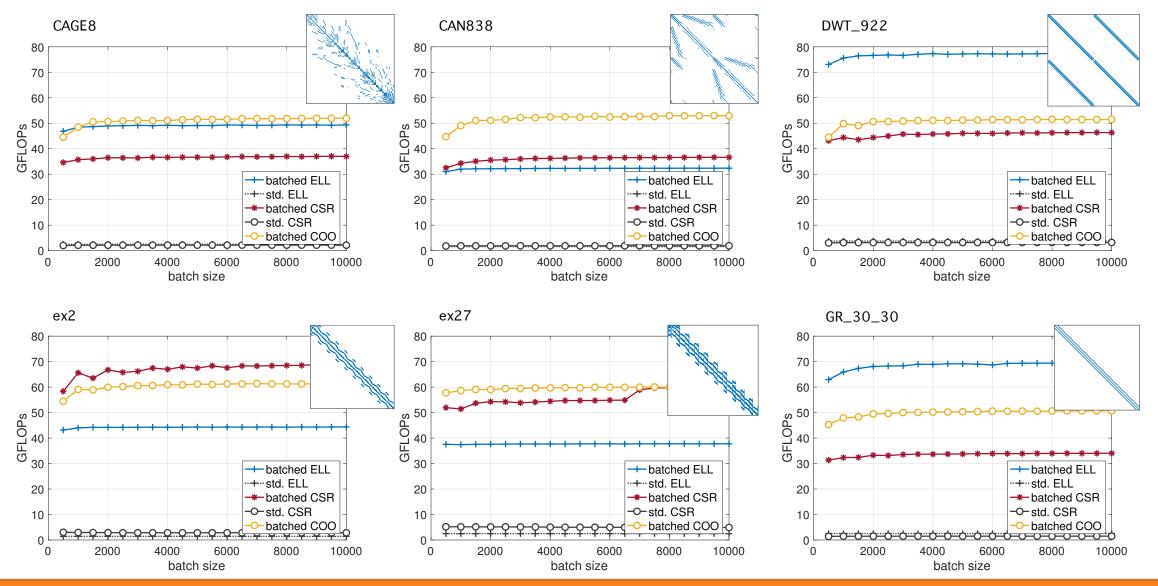
- Use different batched SpMV kernels (COO, CSR, ELL ...)
- A batch consisting of the same matrices (*homogeneous batch*)

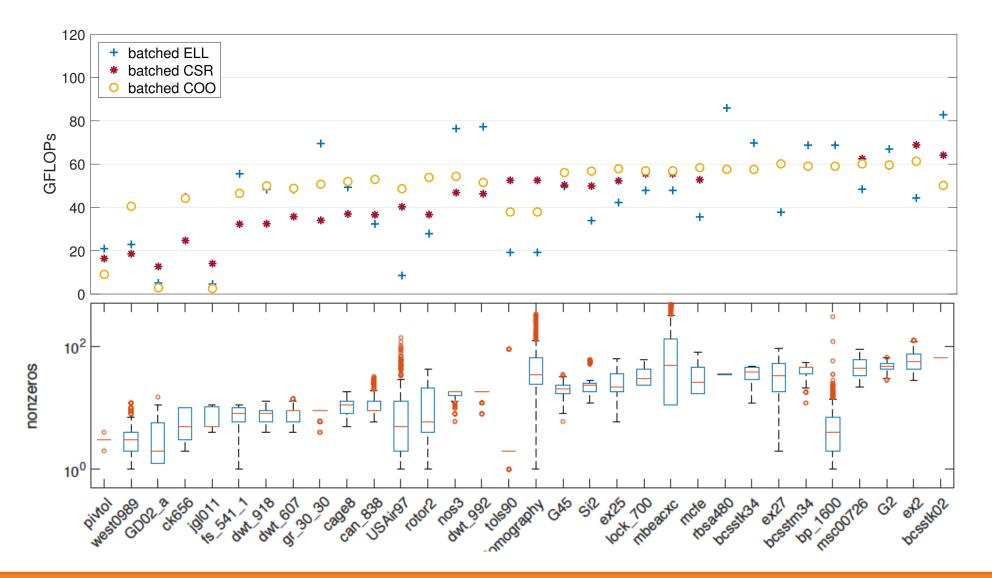


NVIDIA P100 GPU 56 SMX, 5.3 TF DP 16 GB @ 768GB/s

Disclaimer: This is an artificial problem setting!

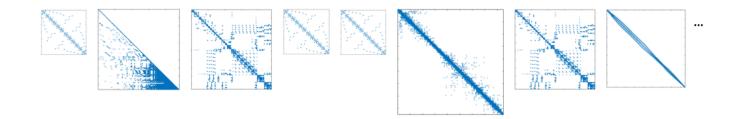
In a real-world scenario, a homogeneous batched SpMV would be handled as SpMM.



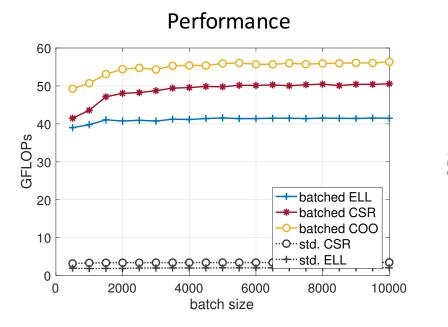


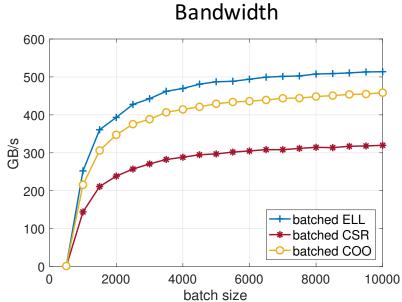
Second experiment:

- Use different batched SpMV kernels (COO, CSR, ELL ...)
- A batch consisting of different matrices (*in-homogeneous batch*)
 - 1. "somewhat similar" (similar size, nonzero count)
 - 2. completely different



Batch of random "similar-sized" problems $n \in [900, 1000]$ $nz \in [3000, 40000]$

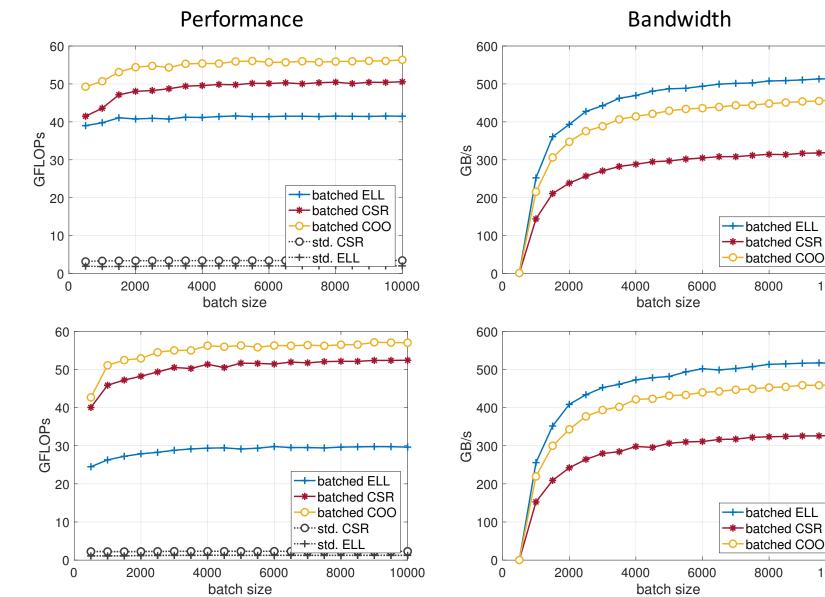




INTER

Batch of random "similar-sized" problems $n \in [900, 1000]$ $nz \in [3000, 40000]$

0 Batch of random 60 "any-sized" problems. 50 $n \in [10, 1000]$ 40 $nz \in [100, 40000]$ 30



-batched COO

-batched COO

10000

8000

10000

8000

ScalA'17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems November 13, 2017

Flexible batched SpMV on GPUs

- Large number of small SpMV simultaneously
- Matrices can be different in size, nnz, pattern
- COO format most suitable for inhomogeneous batches

EXASCALE COMPUTING P R D J E C T

RESEARCH SPONSORED BY

The Exascale Computing Project

A Collaborative effort of the U.S. Department of Energy Office of Science And the National Nuclear Security Administration

(17-SC-20-SC)

This work is in Collaboration with:

