Publications

Export 124 results:
Filters: Author is Jack Dongarra  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Dongarra, J., V. Getov, and K. Walsh, The 30th Anniversary of the Supercomputing Conference: Bringing the Future Closer—Supercomputing History and the Immortality of Now,” Computer, vol. 51, issue 10, pp. 74–85, November 2018. DOI: 10.1109/MC.2018.3971352  (1.73 MB)
Dongarra, J., M. Faverge, T. Herault, J. Langou, and Y. Robert, Hierarchical QR Factorization Algorithms for Multi-Core Cluster Systems,” IPDPS 2012, the 26th IEEE International Parallel and Distributed Processing Symposium, Shanghai, China, IEEE Computer Society Press, May 2012.  (405.71 KB)
Dongarra, J., M. Faverge, T. Herault, M. Jacquelin, J. Langou, and Y. Robert, Hierarchical QR Factorization Algorithms for Multi-core Cluster Systems,” Parallel Computing, vol. 39, issue 4-5, pp. 212-232, May 2013.  (1.43 MB)
Dongarra, J., Report on the Fujitsu Fugaku System,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-06: University of Tennessee, June 2020.  (3.3 MB)
Dongarra, J., and A. Geist, Report on the Oak Ridge National Laboratory's Frontier System,” ICL Technical Report, no. ICL-UT-22-05, May 2022.  (16.87 MB)
Dongarra, J., A. Haidar, O. Hernandez, S. Tomov, and M G. Venkata, POMPEI: Programming with OpenMP4 for Exascale Investigations,” Innovative Computing Laboratory Technical Report, no. ICL-UT-17-09: University of Tennessee, December 2017.  (1.1 MB)
Dongarra, J., M. Gates, Y. Jia, K. Kabir, P. Luszczek, and S. Tomov, MAGMA MIC: Linear Algebra Library for Intel Xeon Phi Coprocessors , Salt Lake City, UT, The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC12), November 2012.  (6.4 MB)
Dongarra, J., M. Gates, P. Luszczek, and S. Tomov, Translational Process: Mathematical Software Perspective,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-11, August 2020.  (752.59 KB)
Dongarra, J., M. Gates, J. Kurzak, P. Luszczek, and Y. Tsai, Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators,” Proceedings of the IEEE, vol. 106, issue 11, pp. 2040–2055, November 2018. DOI: 10.1109/JPROC.2018.2868961  (2.53 MB)
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, Achieving Numerical Accuracy and High Performance using Recursive Tile LU Factorization,” University of Tennessee Computer Science Technical Report (also as a LAWN), no. ICL-UT-11-08, September 2011.  (618.53 KB)
Dongarra, J., and V. Eijkhout, Self-adapting Numerical Software for Next Generation Applications (LAPACK Working Note 157),” ICL Technical Report, no. ICL-UT-02-07, 00 2002.  (475.94 KB)
Dongarra, J., S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Yamazaki, H. Anzt, A. Haidar, and A. Abdelfattah, With Extreme Computing, the Rules Have Changed,” Computing in Science & Engineering, vol. 19, issue 3, pp. 52-62, May 2017. DOI: 10.1109/MCSE.2017.48  (485.34 KB)
Dongarra, J., S. Moore, P. Mucci, K. Seymour, and H. You, Accurate Cache and TLB Characterization Using Hardware Counters,” International Conference on Computational Science (ICCS 2004), Krakow, Poland, Springer, June 2004. DOI: 10.1007/978-3-540-24688-6_57  (167.1 KB)
Dongarra, J., M. Gates, P. Luszczek, and S. Tomov, Translational process: Mathematical software perspective,” Journal of Computational Science, vol. 52, pp. 101216, 2021. DOI: 10.1016/j.jocs.2020.101216
Dongarra, J., S. Hammarling, N. J. Higham, S. Relton, and M. Zounon, Optimized Batched Linear Algebra for Modern Architectures,” Euro-Par 2017, Santiago de Compostela, Spain, Springer, August 2017. DOI: 10.1007/978-3-319-64203-1_37  (618.33 KB)
Dongarra, J., and P. Luszczek, Introduction to the HPCChallenge Benchmark Suite,” ICL Technical Report, no. ICL-UT-05-01, January 2005.  (124.86 KB)
Dongarra, J., M. Faverge, H. Ltaeif, and P. Luszczek, Exploiting Fine-Grain Parallelism in Recursive LU Factorization,” Proceedings of PARCO'11, no. ICL-UT-11-04, Gent, Belgium, April 2011.
Dongarra, J., and S. Tomov, An Introduction to the MAGMA project - Acceleration of Dense Linear Algebra : NVIDIA Webinar, June 2010.

Pages