
Netlib and NA-Net: Building A
Scientific Computing Community

Jack Dongarra
University of Tennessee, ORNL, and University of Manchester

Gene H. Golub
(Deceased 16 November 2007)

Eric Grosse
Google

Cleve Moler
MathWorks

Keith Moore
University of Tennessee

Two resources evolved in the early 1980s to serve the needs of the
scientific computing community. These resources were Netlib, a
software repository that facilitated distribution of public-domain
software, and NA-Net, a file of analysts’ contact information that
eventually supported an online directory and newsletter digest. The
authors who created Netlib and NA-Net explain the history of these
resources and their continuing impact.

With today’s effortless access to open
source software and data via a high-speed
Internet and responsive search engines, it is
hard to remember just how different the life
of computational scientists was in the 1970s
and early 1980s. At the time, computing
largely took place in a mainframe world,
typically supported by one of the few
commercial numerical libraries installed by
computer center staff. Since this situation
was imperfect (the existing software did not
solve all of scientific computing’s needs),
scientists were forced to write or borrow
additional software. There were a few exem-
plary libraries such as EISPACK in circulation,
and a larger body of Fortran programs of
variable quality. Obtaining them was a
bothersome process, however, that involved
leveraging personal contacts, government
bureaucracies, negotiated legal agreements,
and the expensive and unreliable shipping of
9-track magnetic tapes or punch card decks.
There had to be a better way. That better way
manifested itself as two different, separately

developed resources filling different func-
tions but which were both aimed at serving
the scientific computing community. These
resources, still active today, were Netlib and
NA-Net.

Netlib repositories—collections of mathe-
matical software, papers, and databases—were
initially established in 1984 by Eric Grosse at
Bell Labs and Jack Dongarra at Argonne
National Laboratory. Based on a suggestion
from Gene Golub to build a repository of
research software, Dongarra and Grosse de-
signed the first Netlib repository. Each repos-
itory made a collection of high-quality math-
ematical software available via electronic
mail—the Bell Labs server provided access via
uucp (Unix to Unix CoPy) protocols, while the
Argonne server made the collection accessible
via IP (Internet Protocol). The Netlib collection
quickly spread to mirror servers around the
world. As the Internet became ubiquitous,
other access methods were added. Although
the electronic mail interface is still supported,
most access today is via the World Wide Web.

30 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/08/$25.00 G 2008 IEEE

Prior to Netlib (short for ‘‘network library’’),
software codes had been shared by interest
groups such as SHARE since the mid-1950s, but
such groups tended to be limited by member-
ship or personal relationships. By widening
the distribution of public-domain numerical
software, Netlib gave greater leverage to early
open source efforts and helped establish the
trend of software distribution via the network.
Netlib remains popular today.

In a separate development that was also
aimed at the scientific computing communi-
ty, by the time Netlib was established, an ‘‘na
list’’ (na for ‘‘numerical analysis’’) of email
addresses had already been maintained for
several years by Gene Golub, then chair of the
Computer Science Department at Stanford
University. By 1983, this list was being used to
provide an electronic mail forwarding service
to numerical analysis specialists. Mail to na.
lastname@su-score would be forwarded to the
list member with that last name. An email
broadcast facility was also provided: mail sent
to na@su-score would be forwarded to every-
one on the list. By February 1987, this
broadcast facility had evolved into a moder-
ated email digest, which soon became a
weekly electronic newsletter. A ‘‘white pages’’
database and a World Wide Web interface
were eventually added, resulting in the set of
services provided by NA-Net today. The NA-
Net remains a widely used and valuable
resource for the numerical analysis commu-
nity. The NA-Digest is one of the oldest
electronic periodicals, and its popularity
continues to grow.

In this article, which describes the early
history of these two resources and the ratio-
nale behind the system architectures chosen,
we assess what parts worked well and which
did not.

Netlib
The concept behind Netlib was to facili-

tate quick, easy, and efficient on-demand
access to useful public-domain computation-
al software of interest to the scientific
computing community. The mechanism
chosen for distribution of this software was
electronic mail. Initially, there were two
repositories: one at Bell Labs and the other
at Argonne National Laboratory. The Bell
Labs server provided access via uucp proto-
cols, while the Argonne server made the
collection accessible via Internet mail. To
request files from either server, a user would
send one or more commands as message text
to that server’s email address. For instance, a

message consisting of the text ‘‘send dqag
from quadpack’’ sent to either research!netlib
(uucp) or netlib@anl-mcs (Internet) would
result in a reply consisting of the ‘‘dqag’’
subroutine from the ‘‘quadpack’’ package,
along with any additional routines needed to
use that subroutine.

At the time Netlib was introduced, public-
domain software was chiefly distributed by
physical media such as magnetic tapes being
sent through the postal service. This was
difficult not only because of the time and
expense involved with handling physical
media, but also because of the lack of any
widely used standards for writing magnetic
tapes. Each computing platform wrote tapes
in its native format; and because of differ-
ences in word size, record size, and organi-
zation of the data on tape, reading foreign
tapes could be quite difficult and labor
intensive. Fortran programs were formatted
with sequence numbers in columns 73–80
and blank fill, which was painfully ineffi-
cient in days of dial-up lines before compres-
sion was prevalent.

Of course, the Arpanet had been in exis-
tence for several years by that time, and
software was commonly shared over the
Arpanet’s File Transfer Protocol (FTP), but the
Arpanet served a limited community, and the
Internet protocols adopted by the limited-
commercial-use Arpanet in 1981 were only
beginning to see wider use. Software could also
be uploaded to or downloaded from ‘‘bulletin
board systems’’ or BBSs, but this could entail
significant long-distance telephone charges to
peruse distant servers. A picture of the techni-
cal environment of the early Internet, uucp,
Bitnet, and separate systems like AOL with
gateway size limits due to dial-up and restart-
from-beginning error recovery has been docu-
mented elsewhere.1,2

By contrast, Arpanet electronic mail sys-
tems standardized very early on a common
message format to be used across all platforms,
and uucp mail used a similar format. Bitnet had
some different conventions, but adequate
gateways existed. Costs of email were absorbed
into budget overheads, so experimental use
could flourish without formalities. Collective-
ly, these conditions made electronic mail a
superior medium for the exchange of source
code, at least for small files, and Netlib made
effective use of it. Unknown to us at the time,
silicon chip designs were being sent off for
fabrication by email in a service known as
MOSIS (Metal Oxide Semiconductor Imple-
mentation Service).3 Another early informa-

April–June 2008 31

tion distribution service by email was at
CSnet.4 Clearly, then, by the beginning of
the 1980s, a critical mass of email users in the
scientific community had arrived, and email-
based servers were inevitable.

Criteria collection and contents

Netlib limited its scope to mathematical
software and related information of interest to
scientific computing. Netlib’s developers made
an effort to limit the collection to software of
demonstrated high quality. The fact that high-
quality public-domain software packages such
as LINPACK and EISPACK were available for
Netlib’s initial collection helped to set high
standards for future additions to the collec-
tion. More generally, the numerical analysis
community’s tradition of producing robust
software to address clearly defined problems

made it somewhat easier to establish a high-
quality library for scientific computing than
for some other areas.

Another way in which Netlib maintained
its quality was by having all contributions
reviewed by a ‘‘chapter editor’’ who provided
some assurance of the quality, stability, and
novelty of the software, and who resolved
authorship disputes. However, Netlib never
attempted to do serious testing, as asked of
the reviewers for ACM’s Transactions on
Mathematical Software (TOMS). Chapter edi-
tors typically made a quick judgment call
based on publication of the underlying
algorithm in a top journal, reputation of the
software in the community, and an instinct
developed from personal computing experi-
ence in the area for what was novel and
worthwhile.

Definition of Terms
AMS—The American Mathematical Society (AMS) is

an association of professional mathematicians dedicated
to the interests of mathematical research and scholar-
ship through various publications and conferences.

BLAS—Basic Linear Algebra Subprograms (BLAS) are
standardized application programming interfaces for
subroutines to perform basic linear algebra operations
such as vector and matrix multiplication.

EISPACK—A software library for numerical computa-
tion of eigenvalues and eigenvectors of matrices,
written in Fortran.

FNLIB—Portable special function routines (e.g., Bessel
functions, the error function, and so on).

IMSL—The IMSL (International Mathematics and
Statistics Library) Numerical Libraries are software
libraries of numerical analysis functionality that are
implemented in widely used computer programming
languages of C, Java, C#.NET, and Fortran. Software
developers will typically embed algorithms from these
libraries into their software applications, using their
preferred programming language. The IMSL Libraries
are provided by Visual Numerics Inc.

LINPACK—A software library for performing numerical
linear algebra on digital computers.

Macsyma—A computer algebra system that was
originally developed from 1968 to 1982 at MIT as part
of Project MAC and later marketed commercially. It was
the first comprehensive symbolic mathematics system
and one of the earliest knowledge-based systems; many
of its ideas were later adopted by Mathematica, Maple,
and other systems.

Matlab—A numerical computing environment and
programming language. Created by The MathWorks,
Matlab allows easy matrix manipulation, plotting of
functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with pro-
grams in other languages.

MOSIS—MOSIS (Metal Oxide Semiconductor Im-
plementation Service) is probably the oldest (1981)
integrated circuit (IC) foundry service and one of the
first Internet services other than supercomputing
services and basic infrastructure such as email or FTP.

MINPACK—A library of Fortran subroutines for the
solving of systems of nonlinear equations, or the least-
squares minimization of the residual of a set of linear or
nonlinear equations.

NAG—NAG Numerical Libraries is a software prod-
uct sold by The Numerical Algorithms Group Ltd
(originally the Nottingham Algorithms Group). The
product is a software library of numerical analysis
routines.

PORT—The PORT Mathematical Subroutine Library
from Bell Labs is a collection of Fortran 77 routines that
address many traditional areas of mathematical soft-
ware, including approximation, ordinary and partial
differential equations, linear algebra and eigensystems,
optimization, quadrature, root finding, special func-
tions, and Fourier transforms, but excluding statistical
calculations. PORT stands for Portable, Outstanding,
Reliable, and Tested.

QUADPACK—A Fortran subroutine package for the numer-
ical computation of definite one-dimensional integrals.

SHARE—A volunteer-run user group for IBM main-
frame computers that was founded in 1955 by Los
Angeles-area IBM 701 users. It evolved into a forum for
exchanging technical information about programming
languages, operating systems, database systems, and
user experiences for enterprise users of small, medium,
and large-scale IBM computers such as IBM S/360, IBM
S/370, zSeries, pSeries, and xSeries.

Netlib and NA-Net: Building A Scientific Computing Community

32 IEEE Annals of the History of Computing

The initial Netlib collection contained
LINPACK; EISPACK; MINPACK; FNLIB; routines from
the book Computer Methods for Mathematical
Computations by Forsythe, Malcolm, and Mo-
ler; and QUADPACK, as well as a collection of
‘‘golden oldies.’’ Soon, additional codes were
added from TOMS as well as some benchmark-
ing codes, a biharmonic solver, multiprecision
arithmetic package, BLAS (Basic Linear Algebra
Subprograms), and so on. Substantial effort
was expended in collecting these, especially by
TOMS, in a unified form suitable for network
distribution. There was never any doubt,
however, that the real intellectual effort and
credit belonged to the software component
authors and not to Netlib. For the period
considered in this article (1984 to approxi-
mately 1994), essentially all scientific software
was written in Fortran or C (as opposed to
Macsyma or Excel or Matlab, say). Scientific
software remains the focus of Netlib.

The dominant commercial packages at the
time were from Harwell Software Libraries,
IMSL Numerical Libraries, and NAG Numerical
Libraries, with important but smaller roles
played by the PORT Mathematical Subroutine
Library, and the libraries of Boeing and the
Department of Energy. Although these pack-
ages were of high quality and had a financial
foundation for user support, they were diffi-
cult to adapt in the transition that was then
under way, from mainframes in computer
centers to departmental servers and personal
computers. At least as important as the
difficulty of adapting commercial packages
was user dissatisfaction with the delay in
getting new algorithms into the commercial
releases. With Netlib, conversely, since the
software was downloaded over the network it
was available in ‘‘real’’ time—there were no
delays in ordering and delivering the software.
The user’s ability to change the software
directly when needed is a common theme in
justifying open source today.

Another important source of software,
outside of Netlib, came from small snippets
of code that users would take from Netlib and
paste directly into their own programs. The
best and most prominent of these was Numer-
ical Recipes,5 which was published after Netlib
was well along but which had at least as wide
an impact. An enduring role of the software in
Netlib, by comparison, is to handle those more
difficult numerical problems that are out of
reach of small algorithms.

Unlike the commercial libraries and efforts
such as Numerical Recipes, Netlib has also
provided a home for the numerical research

community to share a historical collection of
many competing algorithms designed to solve
the same problem. This can confuse the
engineer who wants digested advice on the
single best method to use but enhances the
research community by making it feasible to
run fairer comparisons of new algorithms
against old. Extending that role further, Netlib
hosts collections of standard data sets or
functions for such algorithm comparisons.

Finally, Netlib has material that does not fit
the broader pattern, such as the polyhedra
database. These materials were added at a time
when file distribution was such a burden that
authors were desperate for help and seized the
Netlib opportunity.

Server locations and mirroring

The Bell Labs Netlib server went online 3
January 1984, and was used for software
distribution within Bell Labs during that
spring. Both the Bell Labs and Argonne servers
were in public use by July of that year.

The Argonne server was physically moved
to Oak Ridge National Laboratory (ORNL) in
October 1989, when Jack Dongarra moved to
the University of Tennessee. As the Netlib
collection became more popular, it became
advantageous to mirror the collection outside
of North America; however, the number of
official mirrors was deliberately kept small
while we learned how to minimize the
differences between the servers. A European
mirror was established in Oslo, Norway, in
December 1989, and an Australian mirror also
existed by 1989. In May 1993, the original
Sequent server that had been in service at
Argonne was replaced by two SparcStation 2
machines—one at ORNL and the other at the
University of Tennessee in Knoxville (UTK).

With Netlib, since soft-

ware was downloaded

over the network, it was

available in ‘‘real’’ time—

there were no delays

in ordering and

delivering the software.

April–June 2008 33

These servers were closely synchronized to one
another, and both of the servers were config-
ured to accept email requests sent to the
Netlib@ornl.gov domain.

The ORNL server was retired in 1997. The
official servers today consist of netlib.bell-
labs.com in Murray Hill, New Jersey (which
has moved to netlib.sandia.gov); Netlib.org, at
the University of Tennessee; the UK Mirror
Service in Kent, England; and Netlib.no in
Bergen, Norway. These servers are synchro-
nized to one another via a process described
elsewhere.6 Since the introduction of anony-
mous FTP access to the primary Netlib servers,
many more unofficial mirrors have been
created; there is a great deal of variation
among these mirrors with regard to the
organization and currency of their collections.

What is at least as important as the network
performance benefit from mirroring is the
cultural aspect, namely in the critical role
played by the chapter editors. Since this is a
volunteer effort by busy people working at the
top of their field, it’s imperative that Netlib
make as few demands on their life as possible.
Its principal contribution, therefore, is in
allowing them to make their changes directly
in their own file trees, and mirror the changes
to the other Netlib sites. Setting up a large,
reasonably coherent repository that is genu-
inely shared across multiple organizations in a
peer fashion has been, as far as we know,
another Netlib innovation.

Netlib features

At the time Netlib was created there was no
ubiquitous Internet, but rather an admixture
of incompatible networks, each with different
hosts, services, and means of addressing. In
many cases the networks were interconnected
with mail gateways, but these could be
difficult to use (because of the need to
explicitly route a message through the gate-
ways) and unreliable besides. Because text-
based electronic mail was the only service
common to all of those networks, this was the
means Netlib initially utilized to provide
access to items in its collection, but as Internet
protocols began to be more widely deployed,
other, easier-to-use methods became feasible.
A server for the Internet’s FTP was provided on
the Bell Labs Netlib server in August 1991 and
soon afterward at the ORNL server. The
xNetlib browser was first deployed in Decem-
ber 1991, allowing users to peruse and down-
load items from the ORNL server via a
graphical user interface for the X Window
System.7

In response to the growing popularity of
the World Wide Web, HTTP Netlib servers
were established in October 1993 at UTK and
ORNL; Gopher was enabled in November
1993. A Web server interface was implemented
at Bell Labs one week after Mosaic arrived
there; from our perspective it was the cross-
platform convenience of that browser, much
more than HTML or HTTP, that was revolu-
tionary. Although the email interface is still
supported, HTTP—and to a lesser extent,
FTP—quickly eclipsed all other sources of
Netlib traffic. Netlib dabbled in software-as-a-
service by providing email-delivered transla-
tion of Fortran into C, but sister systems such
as Network-Enabled Optimization System
(NEOS) were much more influential in that
direction for the numerical community.

One of Netlib’s unsuccessful features was its
use of digital signatures. Since large software is
downloaded and compiled without inspection
and may be distributed via mirror sites of
unknown security, we thought people would
appreciate having PGP-signed MD5 check-
sums. We also built mechanisms that would
allow authors to update their own files, subject
to proper signatures. Neither feature got much
use, presumably because we did not make
them sufficiently automatic and because there
have been no known instances of security
abuse involving Netlib.

Another security-related feature was popu-
lar briefly but faded. Before the days of
personal homepages, it could be inconvenient
to locate someone’s contact information. The
NA-Net database went far to solve this for the
numerical analysis community, but was never
as complete as journal editors would like
when, for example, looking for referees. For
its part, Netlib introduced a way to search the
SIAM (Society of Industrial and Applied Math-
ematics) membership list. Since this was
during an era when network connectivity
was unreliable, the method Netlib adopted
was to distribute an encrypted version of the
database along with a program to allowed
restricted searches to protect privacy and deter
spam.8 Eventually this was phased out in favor
of the AMS (American Mathematical Society)
Combined Membership List online.

Two innovative features designed for Netlib
worked well but were eventually casualties of
being tied to a research operating system that
no longer hosts Netlib. The first of these was a
way of asking for a bundle, specifically in the
Unix tar format, for a minimal set of files with
no unresolved dependencies. The second was a
‘‘historic Netlib’’ server that was a kind of time

Netlib and NA-Net: Building A Scientific Computing Community

34 IEEE Annals of the History of Computing

machine allowing one to see all the changes in
a program, much as version control systems
do. It was pleasant to be able to provide such
features without introducing any new access
protocols, using the power of the Plan 9
operating system’s generalized vision of a file.9

Usage patterns

At least at the UTK and ORNL servers,
Netlib usage rose steadily for 1985–2000 (see
Figure 1). Traffic levels have varied in recent
years, possibly in part because of an increased
use of crawlers and mirrors. Approximately 80
percent of the current traffic appears to be
from individual users, 7 percent from mirrors,
and 12 percent from Web crawlers, which are
presumably building indices for use by search
engines.

Community impact

A lot of mathematical software is available,
either commercial or free. However, not all
that software is of high quality. It can also be
difficult to locate the appropriate software by
using web search engines, since the descrip-
tions available for searching may be lacking or
may not match the vocabulary used by the

searcher. A good solution to these problems is
to have experts in the field of numerical
analysis—as is the case with Netlib—maintain
a moderated collection of high-quality soft-
ware that is organized and catalogued with
appropriate metadata to enable easy searching.

Netlib was not the first collection of such
software, however; a few of the best-funded
and well-run laboratories had local libraries
tended by numerical consultants who grew to
know the local needs especially well. As one
relevant example, the Stanford Linear Acceler-
ator Center collaborated with Stanford Uni-
versity’s Computer Science Department to
train graduate students in numerical analysis
while contributing to state-of-the-art numeri-
cal processing for physics calculations. Stu-
dents from that program went on to be active
contributors to Netlib.

The main impact of Netlib was to democ-
ratize and reduce the duplication of libraries
such as Stanford’s by making them available
worldwide, promoting the best practice of
reuse to a broader audience. A secondary
unintended impact may have been to weaken
the case for employing local consultants. We
have no data on the extent of this effect, but

Figure 1. Netlib usage at the University of Tennessee–Knoxville and Oak Ridge National Laboratory.

April–June 2008 35

would argue an experienced consultant is
vastly better than any catalog. Whatever harm
may have been done on this score has been
more than balanced by the increased profes-
sional credit earned by authors of widely used
codes. It is not uncommon in grant proposals
for authors to cite Netlib download statistics as
evidence of their reputation and practical
impact in the field.

The experience gained from Netlib has been
transferred to other projects designed to
promote software collections management
and software reuse. The National HPCC Soft-
ware Exchange (NHSE) strove to apply the
techniques and technologies of Netlib to more
loosely coupled software repositories. The
NHSE also made software repository creation
and maintenance easier through the Reposi-
tory In a Box (RIB) toolkit.

Netlib pioneered network delivery of soft-
ware during a period of explosive growth in
networking, requiring the tracking of new
delivery technologies as mentioned above.
Additionally, Netlib has shown that it is
possible to manage such collections in a
distributed manner, both in terms of infra-
structure and administration. The Netlib col-
lection itself has stopped growing as rapidly as
in its first decade, as algorithm writers found it
increasingly easy to publish their software
directly. However, there is a definite risk that
individual sites will eventually disappear, with
the contents lost to mankind. There is no
guarantee that Netlib will exist forever, but the
distributed administration has already sur-
vived several changes in employers that would
have spelled disaster for a smaller collection.

Related projects

Netlib has had a number of spin-off efforts,
summarized here.

N XNetlib began in 1990, predating the Web
and tools like Netscape. XNetlib was a tool
for ‘‘Web based’’ software distribution.
Whereas Netlib originally used e-mail as
the user interface to the collection of
public-domain mathematical software,
XNetlib used its own specialized X-Window
interface and Unix socket-based communi-
cation.

N NHSE. For 1994–2004, the NHSE (National
HPCC [High-Performance Computing
Council] Software Exchange) existed as a
distributed collection of software, docu-
ments, data, and information of interest
to the high-performance and parallel-com-

puting community. The significance of the
collaborative effort is evident through the
many useful reports and tools generated as
well as the many repositories that have
been (and still are being) created, with the
Repository-In-a-Box (RIB) toolkit developed
in 1996. However, continued operation of
the site without funding has become
impractical.

N RIB provides a toolkit for building and
maintaining metadata repositories. RIB
was developed by the NHSE Technical
Team at the University of Tennessee,
Knoxville. Initially, RIB only provided
tools for the creation of software reposito-
ries. The recent release of RIB v2.0 allows
RIB to create general metadata reposito-
ries. The creation of software metadata
repositories remains the primary applica-
tion of RIB.10

N NetBuild is a tool that automates the process
of selecting, locating, downloading, con-
figuring, and installing computational soft-
ware libraries from over the Internet.
Additional tools aid in the construction
and cataloging of libraries in the format
used by NetBuild.11

NA-Net
The Numerical Analysis Net (NA-Net) is a

collection of several services designed to foster
information and a sense of community among
numerical analysts. It currently consists of an
email forwarding service, the NA-Digest, and a
white-pages database.

One of the primary

benefits of NA-Net’s

forwarding facility was

that it provided all of its

subscribers with a

uniform address. Before

the Internet, email

traveled a hodgepodge of

dissimilar networks.

Netlib and NA-Net: Building A Scientific Computing Community

36 IEEE Annals of the History of Computing

Software and hosting

NA-Net traces its origins to a list of email
addresses maintained by Gene Golub at
Stanford University and distributed to others
within the numerical analysis community. At
some point an electronic mail system was
specially configured so that mail to na.
lastname@su-score (later, score.stanford.edu)
would be forwarded to the person on the list
with that last name. This was originally
implemented by manually copying entries
from Golub’s list into a system alias file
(requiring interaction by the system adminis-
trator each time the list was updated). Even-
tually software was written by Mark Kent and
Ray Tuminaro to allow the forwarding aliases
and address list (for human perusal) to be
generated from a common database.12

At an early stage, Golub collected addresses
of numerical analysts. Jim Wilkinson (a leader
in the field of numerical linear algebra) once
asked, ‘‘Whom can I contact on the Net?’’ and
Golub passed along his file of analyst contacts.
It then occurred to Golub that we ought to have
universal addresses. So at Stanford a system was
set up where a user could address a person as
na.,lastname.@score. We felt that the NA-Net
would enable our community to communicate
more easily with one another, especially when
Net addresses were—at the time—so complicat-
ed. (Some users commented that they could
only communicate via NA-Net!)

One of the primary benefits of NA-Net’s
forwarding facility in those days was that it
provided all of its subscribers with a uniform
address. Before Internet access became ubiqui-
tous, email traveled over a hodgepodge of
dissimilar networks, each with its own ad-
dressing scheme. When sending a message
between dissimilar networks, it was often
necessary to ‘‘source route’’ the message
through a gateway by embedding the recipi-
ent’s address inside the address of the gateway.
Because each network had its own addressing
convention, an address that worked to reach a
recipient from one location of the network
would not necessarily work from another. But
when sending mail to any NA-Net subscriber it
was only needed to understand how to send
mail to one na.lastname address; the same
pattern would work for any other NA-Net
subscriber. This eliminated some of the guess-
work of mailing between networks, at least
when mailing to other NA-Net subscribers.

A broadcast facility was also set up so that a
message sent to na@score.stanford.edu would be
forwarded to everyone on the list. Eventually
traffic volume and accidental misuse became

significant enough that some sort of modera-
tion was required for the broadcast facility, and
so it was converted to an email ‘‘digest.’’ A
moderator would review messages sent to na@
score.stanford.edu, and the selected messages
would then be sent out to everyone. The first
issue of the digest was 13 February 1987. At first
the digest was sent out at irregular intervals but
soon settled into a weekly publication.

In December 1990, the NA-Net was moved
to Oak Ridge National Laboratory, using new
software written by Bill Rosener. The new
software preserved the na.lastname forwarding
and digest functions, but also allowed individ-
uals to add themselves to the NA-Net, remove
themselves, or change addresses, unlike previ-
ous versions that required manual mainte-
nance of the subscriber list.

To subscribe, a user sent an email message
to na.join@na-net.ornl.gov with the following
fields in the message body:

Firstname: user’s first name

Lastname: user’s last name

E-mail: user’s email address

The NA-Net server would then reply with a
message indicating whether the user was
successfully added. To unsubscribe, a user
would send a similar message to the address
na.remove@na-net.ornl.gov; to change an ad-
dress the message was sent to na.change@
na-net.ornl.gov. Each function had its own
email address and its own requirements for
the format of the data to be supplied.13

In May 1991, a ‘‘white pages’’ facility was
added to NA-Net. Members could store infor-
mation about themselves in the white pages
database, such as their interests and home and
work addresses. This information would then
be made available in response to queries sent
by email to na.whois@na-net.ornl.gov.

By June 1993, the service had become so
popular that the server was having difficulty
handling the email traffic. At this time the
entire NA-Net software package was entirely
rewritten by Keith Moore to improve scalability
(especially of email distribution) and robust-
ness, but the user interface remained the same
as before. This software remains in use today,
with only minor changes. In November 1994, a
web interface was added to rid users of the
burden of having to submit requests in text-
based email with rigidly defined syntax.

NA-Digest history and content

In the early days the NA-Digest came about
because Gene Golub’s secretary was sending

April–June 2008 37

the digest to the whole NA-Net address list.
Gene was the original editor of the NA-Digest
until July 1987, when he began a sabbatical
leave from Stanford, and at that time Cleve
Moler of MathWorks began editing the digest.
With only occasional absences, Cleve contin-
ued to edit the digest until September 2005.
Currently, the digest is edited by Tamara Kolda
of Sandia National Labs.

As the name suggests, the intent of the NA-
Digest has been to have short announcements
summarizing more extensive material available
elsewhere. Today, almost all of the digest
contributions have URLs pointing to more
complete announcements available on the Web.

The digest has generally contained any-
thing of interest to the numerical analysis and
mathematical software community. This has
included both technical discussions and in-
formation about community members. Ex-
amples of material commonly appearing in
the digest include announcements of confer-
ences, workshops, software releases, change of
addresses, and new books; advertisements of
jobs; and notices about community members:
awards, significant achievements, and deaths.

Reasonably complete archives of the digest
exist, hosted at http://www.Netlib.org/na-digest-
html/. The archives contain a great deal of
material of interest to anyone studying the
history of numerical analysis software.

Usage patterns

Based on early reports in the NA-Digest and
on log files maintained since 1993, the
number of NA-Net subscribers has increased

steadily from 821 subscribers in May 1997 to
11,295 subscribers today (see Figure 2). (We
are missing some data, as the result of lost log
files, in the interval 1991–1993. The disconti-
nuity in 2000 was caused by removal of many
addresses that were no longer reachable, such
as Bitnet addresses.)

Several thousand messages per day are
forwarded through NA-Net’s email forwarding
service. From a perusal of log file entries, many
of these unfortunately appear to be spam. For
many years the NA-Digest subscriber list was
made available for download over Netlib, a
holdover from the days when the network was
small and most people with network access
could be assumed to act reasonably. The list
was also available to anyone who sent mail to
na.sendlist@na-net.ornl.gov. Even after the list
was removed from Netlib and the sendlist
address was disabled, however, subscriber
addresses were occasionally found to have
been ‘‘leaked’’ by various means.

Community impact

The international numerical analysis com-
munity is small enough that it still has a
cohesive, ‘‘family’’ feeling. We believe the NA
digest has helped maintain that feeling;
moreover, the fact that the digest is still
distributed via low-tech, simple text email
means that it is accessible to anyone with
access to a computer and a network connec-
tion. This is particularly important to subscrib-
ers around the world who are unable to travel
to many meetings. Cleve Moler reports that he
has several times met people who recognize

Figure 2. NA-Net subscriber growth.

Netlib and NA-Net: Building A Scientific Computing Community

38 IEEE Annals of the History of Computing

his name primarily as the ‘‘guy who sends me
email every week.’’

We are indebted for the feedback we
received of a referee’s comment (made anon-
ymously for a paper’s review in July 2007) for
observing that

NA-Net’s existing context was probably SIGNUM.
This ACM Special Interest Group for Numerical
Computation built a community around the
quarterly SIGNUM Newsletter, which was mailed
to members. (Within the ACM, some SIGs are
held together by strong conferences that define
them, while others are held together by the
exchange of information in a newsletter.
SIGNUM never had a strong recurring confer-
ence—SIAM served that role better—so it was
primarily a ‘‘newsletter SIG.’’) NA Digest provided
a much better forum for this type of information
exchange, delivering it more quickly, eventually
reaching a much wider community, and provid-
ing other valuable services. SIGNUM folded
around the year 2000 after being in existence
for more than 25 years. The success of NA-Net
was probably a strong reason for its demise.

Lessons for funding models
One reason to consider the history of

successful projects such as Netlib and NA-Net
is to try to generalize and see what decision
makers today might learn for encouraging
other successes. In this section, we speculate
on the critical issue of motivation and support.

The idea that computational modeling and
simulation represents a new branch of scien-
tific methodology, alongside theory and ex-

perimentation, was introduced about three
decades ago. It has since come to symbolize
the enthusiasm and sense of importance that
people in our community feel for the work
they are doing. But when we try to assess how
much progress we have made and where things
stand along the developmental path for this
new ‘‘third pillar of science,’’ recalling some
history about the development of the other
pillars can help keep things in perspective. It
seems clear that while computational science
has had many remarkable youthful successes, it
is still at a very early stage of growth.

Many of us today who want to hasten that
growth believe that the most progressive steps
in that direction require much more commu-
nity focus and funding on the vital core of
computational science: software and the
mathematical models and algorithms it en-
codes. But when it comes to advancing the
cause of computational modeling and simula-
tion as a new part of the scientific method,
there is no doubt that the complex software
‘‘ecosystem’’ it requires must take center stage.

At the application level, the science must be
captured in mathematical models, which in
turn are expressed algorithmically and ulti-
mately encoded as software. Accordingly, on
typical scientific projects, the majority of
funding supports this translation process,
beginning with scientific ideas and ending
with executable software, and which over its
course requires intimate collaboration among
domain scientists, computer scientists, and
applied mathematicians. This process also
relies on a large infrastructure of mathematical
libraries, protocols, and system software built
up over many years and which must be
maintained, ported, and enhanced for many
more years to come if the value of the
application codes that depend on it is to be
preserved and extended. The software that
encapsulates all this time, energy, and
thought, routinely outlasts (usually by years,
sometimes by decades) the hardware it was
originally designed to run on, as well as the
individuals who designed and developed it.

The life of computational science, there-
fore, revolves around a multifaceted software
ecosystem. In the early days, Netlib and NA-
Net supplemented commercial libraries, con-
ferences, and journals in building such an
ecosystem. But today there is (and should be)
a real concern that this ecosystem of compu-
tational science, with all its complexities, is
not ready for the major challenges that will
soon confront the field. Domain scientists
now want to create much larger, multidimen-

Many of us who want to

hasten growth in

computational science

believe that to do so

requires much more

community focus and

funding on its vital core:

software and the

mathematical models and

algorithms it encodes.

April–June 2008 39

sional applications in which a variety of
previously independent models are coupled
together, or even fully integrated. They hope
to be able to run these applications on
petascale systems with tens of thousands of
processors, to extract a good fraction of the
performance these platforms can deliver, to
recover automatically from the processor
failures that regularly occur at this scale, and
to do all this without sacrificing good pro-
grammability. This vision of what computa-
tional science wants to become contains
numerous unsolved and exciting problems
for the software research community. Unfor-
tunately, it also highlights aspects of the
current software environment that are either
immature, underfunded, or both.

The efforts of Netlib and the NA-Net’s NA-
Digest, for the most part, have been through
volunteers. These services have been viewed by
the community as important and successful,
which by itself has been motivation enough
for us to devote substantial time to the effort,
and enough goodwill for our employers to
allow that effort. Advancing to the next stage
of growth for computational simulation and
modeling will require the solution of hard,
basic research problems in computer science
and applied mathematics as well as creating
and promulgating a new paradigm for the
development of scientific software. So the
obvious questions arise: How should this kind
of activity be supported? Where should it be
done? universities? companies like Math-
Works? We’ve been told many times by the
funding agencies that ‘‘it isn’t research.’’ These
are difficult, but important, questions going
forward. With less industrial research support
for broad ecosystems efforts than has been
available in past decades, we believe progress
will require a greater level of sustained funding
from governmental sources.

Summary
Software distributed by Netlib comes with

the disclaimer that ‘‘anything free comes with
no guarantee.’’ In contrast to commercial
vendors like the Numerical Algorithm Group
(NAG) and IMSL Numerical Libraries, Netlib
offers no support beyond whatever documen-
tation contributing authors choose to provide
with their code. On the other hand, Netlib
provides free, easy access to a large body of
high-quality code, and the phenomenal
growth of Netlib attests to the value of this
service. We hope that Netlib, by making high-
quality code even more accessible, has encour-

aged software developers to make their source
codes freely available and will continue to
make good programming still easier for the
scientific computing community.

Both the NA-Digest and NA-Net have
provided a singular resource for the advance-
ment of science and education by helping to
create a community—and, at the same time, a
sense of community—of those interested in
scientific computation. It has allowed for
cross-pollination of ideas and techniques
among scientists, engineers, and numerical
analysts, both from academia and industry.

Acknowledgments
The authors thank Don Fike for assistance
with Netlib statistics, and Mark Crispin and
Mark Kent for information about early NA-Net
implementation. Mel Ciment, who was at the
National Science Foundation, provided seed
funding for Netlib and NA-Net when they first
started. Sandy Fraser gave crucial executive
support at Bell Labs, not only in budget but by
accepting the legal uncertainties of network
software distribution in the early days.

References and notes
1. D. Frey and R. Adams, !%@ A Directory of Electronic

Mail Addressing and Networks, 3rd ed., O’Reilly &

Associates, 1993.

2. E. Krol, The Whole Internet User’s Guide & Catalog,

2nd ed., O’Reilly & Associates, 1994.

3. C. Tomovich, ‘‘MOSIS-A Gateway to Silicon,’’ IEEE

Circuits and Devices Magazine, vol. 4, no. 2, 1988,

pp. 22-23.

4. C. Partridge, C. Mooers, and M. Laubach, ‘‘The

CSNET Information Server: Automatic Document

Distribution Using Electronic Mail,’’ SIGCOMM

Comput. Commun. Rev., vol. 17, no. 4, 1987,

pp. 3-10.

5. W.H. Press et al., Numerical Recipes in C: The Art of

Scientific Computing, 2nd ed., Cambridge Univ.

Press, 1992.

6. E. Grosse, ‘‘Repository Mirroring,’’ Transactions on

Mathematical Software, vol. 21, no. 1, 1995,

pp. 89-97.

7. J. Dongarra, T. Rowan, and R. Wade, ‘‘Software

Distribution Using XNETLIB,’’ Transactions on Mathe-

matical Software, vol. 21, no. 1, 1995, pp. 79-88.

8. J. Feigenbaum, E. Grosse, and J.A. Reeds,

‘‘Cryptographic Protection of Membership Lists,’’

Newsletter of the International Association for

Cryptologic Research, vol. 9, no. 1, 1992, pp. 16-20;

ftp://cm.bell-labs.com/cm/cs/doc/91/4-12.ps.gz.

9. R. Pike et al., ‘‘Plan 9 from Bell Labs,’’ Proc. Summer

1990 UKUUG Conf., London, July 1990, pp. i-9.

10. S. Browne, P. McMahan, and S. Wells, Repository

In a Box Toolkit for Software and Resource Sharing,

Netlib and NA-Net: Building A Scientific Computing Community

40 IEEE Annals of the History of Computing

tech. report UT-CS-99-424, Dept. of Computer

Science, Univ. of Tennessee, Knoxville, 1999;

http://icl.cs.utk.edu/publications/tech_reports/

1999/ut-cs-99-424.ps.

11. K. Moore and J. Dongarra, NetBuild (version 0.02),

tech. report UT-CS-01-461, Dept. of Computer

Science, Univ. of Tennessee, Knoxville, 2001;

http://www.cs.utk.edu/,library/TechReports/

2001/ut-cs-01-461.ps.Z.

12. M. Kent, The Numerical Analysis Net (NA-NET),

Tech. Report 85, Institut für Informatik,

Eidgenössische Technische Hochschule Zürich,

Jan. 1988.

13. J. Dongarra and B. Rosener, NA-Net / Numerical

Analysis Net, Tech. Report ORNL/TM-11986, Oak

Ridge Nat’l Laboratories, Dec. 1991.

Jack Dongarra is a University

Distinguished Professor of

Computer Science at the Uni-

versity of Tennessee and

holds the title of Distin-

guished Research Staff in the

Computer Science and Math-

ematics Division at Oak Ridge

National Laboratory. He is also an adjunct profes-

sor in the Computer Science Department at Rice

University, and Turing Fellow at the University of

Manchester. He is a Fellow of the AAAS, the ACM,

and the IEEE and a member of the National

Academy of Engineering. Dongarra has an MS in

computer science from the Illinois Institute of

Technology and a PhD in applied mathematics

from the University of New Mexico.

Gene H. Golub was born in

Chicago in 1932 and died 16

November 2007 in Stanford,

California. The Fletcher Jones

Professor of Computer Science

at Stanford University, Golub

was a member of the National

Academy of Engineering, the

National Academy of Sciences, and the American

Academy of Arts and Sciences, and an AAAS fellow.

His honors include the B. Bolzano Gold Medal for

Merits in the Field of Mathematical Sciences. One

of his best-known books is Matrix Computations

(Johns Hopkins Univ. Press, 3rd ed., 1996) co-

authored with Charles F. Van Loan. He received

a BS, an MA, and a PhD (all in mathematics) from

the University of Illinois at Urbana-Champaign.

Eric Grosse is an engineering

director for security at Goo-

gle. Earlier, he was at Alcatel-

Lucent’s Bell Laboratories

working on products and re-

search in network security,

systems, algorithms for nu-

merical approximation, and

visualization and scientific computing software.

Grosse received a PhD in computer science from

Stanford University. He is a member of the IEEE,

the SIAM, and the ACM.

Cleve Moler is chairman and

chief scientist at the Math-

Works. He has been a profes-

sor at the University of Michi-

gan, Stanford University,

University of New Mexico,

and the University of Califor-

nia, Santa Barbara. He is the

original author of Matlab, and of three textbooks

on numerical methods. Moler received a BS from

the California Institute of Technology, and an MS

and a PhD from Stanford, all in mathematics.

Keith Moore was a research

associate in the Computer

Science Department, Universi-

ty of Tennessee, from 1991

until 2007. He has participated

in several Internet Engineering

Task Force standardization

working groups since 1990,

which produced the MIME format for electronic

mail messages; extensions to the SMTP protocol for

negotiation of the message size and for delivery

reporting options; standard formats for reporting

electronic mail delivery successes, failures, delays,

and receipt notifications; definition and resolution

mechanisms for Uniform Resource Names; and

transition mechanisms for Internet Protocol ver-

sion 6. Moore received a BS in electrical engineering

at Tennessee Technological University and an MS

in computer science at the University of Tennessee.

Readers may contact Jack Dongarra about this

article at dongarra@cs.utk.edu.

For further information on this or any other

computing topic, please visit our Digital Library

at http://computer.org/csdl.

April–June 2008 41

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

