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Abstract

The challenge for the development of next generation software is the successful management of the complex
grid environment while delivering to the scientist the full power of flexible compositions of the available al-
gorithmic alternatives.Self-Adapting Numerical Software (SANS) systems are intended to meet this significant
challenge.

A SANSsystem comprises intelligent next generation numerical software that domain scientists – with disparate
levels of knowledge of algorithmic and programmatic complexities of the underlying numerical software – can
use to easily express and efficiently solve their problem. The components of aSANS system are:

• A SANS agent with:
– An intelligent component that automates method selection based on data, algorithm and system attributes.
– A system component that provides intelligent management of and access to the computational grid.
– A history database that records relevant information generated by the intelligent component and main-

tains past performance data of the interaction (e.g., algorithmic, hardware specific, etc.) betweenSANS

components.
• A simplescripting language that allows a structured multilayered implementation of theSANS while ensuring

portability and extensibility of the user interface and underlying libraries.
• An XML/CCA-basedvocabulary of metadata to describe behavioural properties of both data and algorithms.
• System components, including aruntime adaptive scheduler, and prototypelibraries that automate the process

of architecture-dependent tuning to optimize performance on different platforms.

A SANS system can dramatically improve the ability of computational scientists to model complex, interdis-
ciplinary phenomena with maximum efficiency and a minimum of extra-domain expertise.SANS innovations
(and their generalizations) will provide to the scientific and engineering community a dynamic computational
environment in which the most effective library components are automatically selected based on the problem
characteristics, data attributes, and the state of the grid.

1 Introduction

As modeling, simulation, and data intensive computing become staples of scientific life across nearly every
domain and discipline, the difficulties associated with scientific computing are becoming more acute for
the broad rank and file of scientists and engineers. While access to necessary computing and information
technology has improved dramatically over the past decade, the efficient application of scientific computing
techniques still requires levels of specialized knowledge in numerical analysis, computer architectures, and
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programming languages that many working researchers do not have the time, the energy, or the inclination
to acquire.

The classic response to this situation, introduced over three decades ago, was to encode the requisite math-
ematical, algorithmic and programming expertise into libraries that could be easily reused by a broad spec-
trum of domain scientists. In recent times, however, the combination of a proliferation in libraries and the
availability of a wide variety of computing platforms, including several types of parallel platforms, have
made it especially hard to choose the correct solution methodology for scientific problems. The advent of
new grid-based approaches to computing only exacerbates this situation. Since the difference in perfor-
mance between an optimal choice of algorithm and hardware, and a less than optimal one, can span orders
of magnitude, it is unfortunate that selecting the right solution strategy requires specialized knowledge of
both numerical analysis and of computing platform characteristics.

What is needed now, therefore, is a way of guiding the user through the maze of different libraries so that
the best software/hardware combination is picked automatically.

We propose to deal with this problem by creatingSelf-adapting Numerical
Software (SANS) systems that not only meet the challenges of scientific
computing today, but are designed to smoothly track the state of the art in
scientific computing tomorrow.

In this paper we will describe the basic ideas ofSANS system, and we will
sketch their realization in application areas such as linear equation solving,
eigenvalue computations, and information retrieval. However, the ideas and
innovationsSANSsystems embody will generalize to a wide range of other
operations. Like the best traditional libraries, such system can operate as
”black box” software, able to be used with complete confidence by domain
scientists without requiring them to know the algorithmic and program-
matic complexities it encapsulates. But in order to self-adapt to maximize
their effectiveness for the user,SANS must encapsulate far more intelli-
gence than standard libraries have aspired to. The work described below
will make it possible to produce aSANS system that incorporates the fol-
lowing elements:

• An intelligent component that includes anautomated data analyzer to uncover necessary information
about logical and numerical structure of the user’s data,a data model for expressing this information
as structured metadata, and aself-adapting decision engine that can combine this problem metadata
with other information (e.g. about past performance of the system) in order to choose the best library
and algorithmic strategy for solving the current problem at hand;

• A history database that not only records all the information that the intelligent component creates or
acquires, but also all the data (e.g., algorithm, hardware, or performance related) that each interaction
with a numerical routine produces;

• A system component that provides the interface to the available computational resources (whether on
a desktop, in a cluster or on a Grid), combining the decision of the intelligent component with both
historical information and its own knowledge of available resources in order to schedule the given
problem for execution;

• A scripting language that generalizes the decision procedure that the SaNS follows and enables sci-
entific programmers to easily make use of it; and

• A metadata vocabulary that expresses properties of the user data and of performance profiles, and that
will be used to build the performance history database. By considering this asbehavioural metadata,
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we are led tointelligent software components as an extension of the CCA [2, 10] framework.
• One or moreprototype libraries, for instance for sparse matrix computations, that accept informa-

tion about the structure of the user’s data in order to optimize for execution on different hardware
platforms.

The fact that current numerical libraries require detailed, specialized knowledge that most potential users
are unlikely to have is a limitation on their usability that is becoming increasingly acute. WithSANS it will
become possible to endow legacy libraries with computational intelligence, and to develop next generation
libraries that make it easier for users to realize the full potential of current day computational environments.
This investigation into the potential for self-adaptation in scientific software libraries will lay the foundation
necessary to meet the demands of computational science over the next decade.

2 Optimization modes

The components of aSANS system can operate in several optimization modes, each being more or less
appropriate depending on the component’s level in the hierarchy and the nature of the data it’s dealing with.

Completely off-line optimizationThis scenario is used in PHIPAC [5] and ATLAS [23], and it works well
for the dense BLAS because the computational pattern is nearly independent of the input: matrix multi-
plication does the same sequence of operations independent of the values stored in the matrices. Because
optimization can be done offline, one can in principle take an arbitrary amount of time searching over many
possible implementations for the best one on a given micro-architecture.

Hybrid off-line/run-time optimization This is the scenario in which Sparsity [16, 15] can work (it can be
run completely off-line as well). In both cases, some kernel building blocks are assembled off-line, such
as matrix-vector or matrix-matrix multiply kernels for very small dimensions. Then at run time the actual
problem instance is used to choose an algorithm. For Sparsity, the problem instance is described by the
sparsity pattern of the matrixA. Any significant processing of this will also overwhelm the cost of a single
matrix-vector multiplication, so only when many are to be performed is optimization worthwhile.

Completely Run-time optimizationThis is the scenario to be followed when the available choices depend
largely on the nature of the user data. The algorithmic decision making Intelligent Agent follows this pro-
tocol of inspecting the data and basing the execution on it. A standard example of inspector-executor is to
examine the sparsity pattern of a sparse matrix on a parallel machine at run, and automatically run a graph
partitioner like Parmetis [17] to redistribute it to accelerate subsequent matrix-vector multiplications.

Feedback Directed OptimizationThis scenario, not disjoint of the last, involves running the program,
collecting profile and other information [14, 9, 3, 1] and recompiling with this information, or saving it
for future refence when similar problems are to be solved. We will make use of this mode through the
explicit incorporation of a database of performance history information.

3 Outline of the structure of self-adaptive software

A Self-adaptive Numerical Software system has three software components: a decision making component,
consisting of an Intelligent Agent plus a History Database, a Network Scheduler, and the underlying Adapt-
able Libraries. TheSANS Agent is the software that accepts the data from the user application in order
to pass it to the scheduler, which takes into account network conditions, and a chosen underlying library.
These libraries can be of a traditional type, but more interestingly they can adapt themselves to the available
hardware, setting algorithm implementation parameters such that performance is optimized with respect to
machine characteristics [22, 5].
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Additionally, we have metadata associated with the user input and the library algorithms, plus a simple
control language which provides the interface between the user and the intelligent agent. With this scripting
language we turn what used to be a mere call – or series of calls – to a library into a script that can convey
contextual information to the intelligent system, which may use this information to make a more informed
choice of software for solving the user’s problem. Through the use of keywords and control structures in the
scripting language we make it possible for the user to pass various degrees of information about the problem
to be solved. In the cases where the user passes little information, the intelligent agent uses heuristics to
uncover as much of this information as is possible.

The Intelligent Agent is the decision making component on an algorithmic level. It is that part of the software
that uses encoded knowledge of numerical analysis to analyze the data (section 4.1). The System Compo-
nent (section 6) knows about hardware, both in general terms and regarding the current state of the network
and available resources. These two components engage in a dialogue to determine the best algorithm and
platform for solving a given user problem. The agent’s actions are informed by the History Database (sec-
tion 4.4) where performance data regarding problems solved is stored. This stored knowledge is then used by
the intelligent and network components to inform their decisions, and possibly tune their decision-making
process.

SANS systems can various usage modes, depending for instance on the level of expertise of the application
user, and on the way the system is called from the application code.

• For a non-expert user, aSANSsystem acts like an expert system, fully taking the burden of finding the
best solver off the user’s hands. In this scenario, the user knows little or nothing about the problem
– or is perhaps unable to formulate and pass on such information – and leaves it up to the intelligent
software to analyze structural and numerical properties of the problem data.

• Users willing and able to supply information about their problem data can benefit from aSANSsystem
in two ways. Firstly, decisions that are made heuristically by the system in expert mode can now be
put on firmer ground by the system interrogating the user or the user passing on the information in the
calling script. Secondly, users themselves can search for appropriate solution methods by using the
system in ‘testbed’ mode.

• Finally, expert users, who know by what method they want to solve their problem, can benefit from
a SANS system in that it offers a simplified and unified interface to the underlying libraries. Even
then, the system offer advantages over the straightforward use of existing libraries in that it can sup-
ply primitives that are optimized for the available hardware, and indeed, choose the best available
hardware.

4 The SANS Agent

4.1 The Intelligent Component

The Intelligent Component of aSANS system is the software that accepts the user data and performs a
numerical and structural analysis on it to determine what feasible algorithms and data structures for the
user problem are. We allow the users to annotate their problem data with ‘metadata’ (section 5), but in the
most general case the Intelligent Component will do this by means of automated analysis (section 4.2).
Moreover, any rules used in analyzing the user data and determining solution strategies are subject to tuning
(section 4.3) based on performance data gained from solving the problems. Below we present each of these
aspects of theSANS agent in turn, including detailed examples of how the components could engage with
and be used by our driver applications.
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4.2 Automated analysis of problem data

Users making a request of aSANS system pass to it both data and an operation to be performed on the
data. The data can be stored in any of a number of formats, and the intended operation can be expressed
in a very global sense (‘solve this linear system’) or with more detail (‘solve this system by an iterative
method, using an additive Schwarz preconditioner’). The fewer such details the user specifies, the more the
SANS will have to determine the appropriate algorithm, computational kernels, and computing platform.
This determination can be done with user guidance, or fully automated. Thus, a major component of aSANS

system is an intelligence component that performs various tests to determine the nature of the input data,
and makes choices accordingly.

Some of these tests are simple and give an unambiguous answer (‘is this matrix symmetric’), others are
simple but have an answer that involves a tuning parameter (‘is this matrix sparse’); still others are not
simple at all but may involve considerable computation (‘is this matrix positive definite’). For the tests with
an answer on a continuous scale, the appropriateness of certain algorithms as a function of the tested value
can only be preprogrammed to a limited extent. Here the self-adaptivity of the system comes into play:
the intelligence component will consult the history database of previous runs in judging the match between
algorithms and test values, and after the problem has been solved, data reflecting this run will be added to
the database.

4.3 Self-Tuning Rules for Software Adaptation

The Intelligent Component can be characterized as self-tuning in the following sense: The automated anal-
ysis of problem data concerns both questions that can be settled quickly and decisively, and ones that can
not be settled decisively, or only at prohibitive cost. For the latter category we will use heuristic algorithms.
Such algorithms typically involve a weighing of options, that is, parameters that need to be tuned over time
by the experience gained from problem runs. Since we record performance data in the history database (sec-
tion 4.4) of theSANS Agent, we have a mechanism to provide feedback for the adaptation of the analysis
rules used by the Intelligent Component, thus leading to a gradual increase in its intelligence.

4.4 History database

Self-adaptivity of our agent-based numerical library to meet the needs of diverse users on any computational
environment requires a knowledge base of performance data to make intelligent choices for algorithms, data
structures, architectures, and programming languages. Each interaction with a numerical routine produces
valuable data ranging from iteration counts (algorithm level) to cache hits (hardware level). The middle-
ware designed to interface between the user application and the computation grid must be able to exploit
all ‘known’ data for each user request. Based on the problem posed by the user, the available data struc-
tures, and the state of the computational environment, the system would select the ‘best’ software library
component(s) for solving the current problem. Categorization of performance and problem ‘metadata’ into
relational databases should be based on the application domain as well as the state of all networks and
processors defining the Grid.

Maintaining a dynamic (constantly updated) database of problems solved along with the state of the compu-
tational grid and library components used to obtain the solution can facilitate dynamic problem solving for
numerous applications and also provide insights into future library component designs. In many cases, not
one algorithm or approach may be viable as grid conditions change (e.g., network traffic increases during
the workday or processor failures) so that the library may dynamically create a ‘polyalgorithm’ approach.
Detecting slow convergence or a stall of any current module would be stored in both contexts: the prob-
lem being solved and the computational environment. In the course of solving the user’s problem, several
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solution strategies (e.g., more than one preconditioner for an iterative solver for sparse linear systems of
equations) may be used and recorded into the database. Utilizing past and present performance metadata
facilitates dynamic (customized) solutions to large-scale problems, which cannot be generated from current
numerical software libraries.

5 Metadata and the Scripting Language

The operations typically performed by traditional libraries are on data that has been abstracted from the
original problem. For instance, one may solve a linear system in order to solve a system of ODEs. However,
the fact that the linear system comes from ODEs is lost once the library receives the matrix and right hand
side. By introducing metadata, we gain the facility of annotating problem data with information that is
typically lost, but which may inform a decision making process. We will implement the facility for the user
to pass such metadata explicitly in order to guide the intelligent library. More importantly, however, we will
design heuristics for uncovering such lost data, taking the burden completely off the user.

The syntax with which the user specifies metadata could take the form of simple lists of keywords. However,
for increased flexibility we propose that the user interact by means of a simple scripting language.

As mentioned earlier, our scripting language will not be a classical programming language; rather, it is one
designed to inexpensively perform a weighing of possible options to compose an adaptive solution as a
‘poly-algorithm.’ A script in this language will be interpreted by the SANS agent to which the application
connects. Additionally, the agent may use pre-defined scripts for method composition. Finally, the agent
may use scripts to dynamically compose a ‘poly-algorithm’ solution based on past solution history, changes
in the run-time environment, etc.

The metadata passed by the user can not only be of varying levels of detail and sophistication, it can also lie
on various points of a scale between purely numerical specification on the one extreme, and user application
terms on the other. The former corresponds to the traditional parameter-passing approach of numerical
libraries: users who are well-versed in numerics can express guidelines regarding the method to be used.
However, most users are not knowledgeable about numerics; they can at most be expected to have expert
knowledge of their application area. By building in a – heuristic – translation from application domain
concepts to numerical concepts we allow the user to annotate the data in problem-native terms, while still
assisting theSANS system in decision making.

6 Scheduler

The System Component of theSANS agent manages the different available computation resources (hard-
ware and software), which in today’s environment can range from a single workstation, to a cluster, to a
Computational Grid. This means that after the intelligent component has analyzed the user’s data regarding
its structural and numerical properties the system component will take the user data, the metadata generated
by the intelligent component, and the recommendations regarding algorithms it has made, and based on its
knowledge of available resources farm the problem out to a chosen computational server and a software
library implemented on that server. Eventually the results are returned to the user. Empirical data is also
extracted from the run and inserted into the database; see section 4.4.

However, this process is not a one-way street. The intelligent component and system component can actually
engage in a dialogue as they weigh preferred algorithms against, for instance, network conditions that would
make the available implementation of the preferred algorithm less computationally feasible.

Part of the System Component is scheduling operations and querying network resources. Software for this
part of aSANS system already exists, in the Netsolve [6, 8, 7], GrADS [4, 19], and LFC [21] packages.
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7 Libraries

Automation of the process of architecture-dependent tuning of numerical kernels can replace the current
hand-tuning process with a semiautomated search procedure. Current limited prototypes for dense matrix-
multiplication (ATLAS [23] and PHIPAC [5]) sparse matrix-vector-multiplication (Sparsity [16, 15], and
FFTs (FFTW [12, 11]) show that we can frequently do as well as or even better than hand-tuned vendor
code on the kernels attempted.

Current projects use a hand-writtensearch-directed code generator (SDCG) to produce many different C
implementations of, say, matrix-multiplication, which are all run on each architecture, and the fastest one
selected. Simple performance models are used to limit the search space of implementations to generate and
time. Since C is generated very machine specific optimizations like instruction selection can be left to the
compiler. This approach can be extended to a much wider range of computational kernels by using compiler
technology to automate the production of these SDCGs.

8 Related Work

We list here, briefly, a number of existing projects and their relations to our proposedSANS systems.

LSA The University of Indiana’sLinear System Analyzer (LSA) (http://www.extreme.indiana.
edu/pseware/lsa/index.html ; [13]) is building a problem solving environment (PSE) for
solving large, sparse, unstructured linear systems of equations. It differs from our proposed systems in
that it mostly provides a testbed for user experimentation, instead of a system with intelligence built in.
A proposed LSA intelligent component (www.extreme.indiana.edu/pseware/lsa/LSAfuture.
html ) is more built on Artificial Intelligence techniques than numerical analysis.

ESI The Equation Solver Interface (ESI) Standards Multi-lab Working Group & Interface Design Effort
(http://z.ca.sandia.gov/esi/ ) aims to develop an integral set of standards for equation-
solver services and components. These standards are explicitly represented as an interoperable set of
interface specifications.
While the ESI standard gives a much more detailed interface to equation solver libraries than we aim
to provide in our scripting language, its existence will make it easier for us to integrate libraries that
have an ESI interface into our systems.

CCA The Common Component Architecture Forum (CCA Forum) (http://www.acl.lanl.gov/
cca/ ) has as its objective to define a minimal set of standard features that a High-Performance Com-
ponent Framework has to provide, or can expect, in order to be able to use components developed
within different frameworks.

ILU Tuning There is ongoing work at Boeing [18] in choosing the many parameters determining an ILU
decomposition to optimize a either time or space, depending on the class of matrices (aerodynamics,
structures, etc.).

Tune The TUNE project (http://www.cs.unc.edu/Research/TUNE/ ) seeks to develops a toolkit
that will aid a programmer in making programs more memory-friendly.

Kernel optimization In the preceeding we have already mentioned ATLAS [23], PHIPAC [5], Sparsity [16,
15], FFTW [12, 11]. An interesting project that combines ideas of dynamic optimization and low-level
kernel optimization is Spiral [20] which generates optimal implementations of DSP algorithms.
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