PLASMA  2.4.5
PLASMA - Parallel Linear Algebra for Scalable Multi-core Architectures
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups
pdorglqrh.c File Reference
#include "common.h"
Include dependency graph for pdorglqrh.c:

Go to the source code of this file.

Macros

#define A(m, n)   BLKADDR(A, double, (m), (n))
#define Q(m, n)   BLKADDR(Q, double, (m), (n))
#define T(m, n)   BLKADDR(T, double, (m), (n))
#define T2(m, n)   BLKADDR(T, double, (m), (n)+(A.nt))

Functions

void plasma_pdorglqrh_quark (PLASMA_desc A, PLASMA_desc Q, PLASMA_desc T, int BS, PLASMA_sequence *sequence, PLASMA_request *request)

Detailed Description

PLASMA auxiliary routines PLASMA is a software package provided by Univ. of Tennessee, Univ. of California Berkeley and Univ. of Colorado Denver

Version:
2.4.5
Author:
Dulceneia Becker
Date:
2011-05-24 d Tue Nov 22 14:35:41 2011

Definition in file pdorglqrh.c.


Macro Definition Documentation

#define A (   m,
 
)    BLKADDR(A, double, (m), (n))

Definition at line 17 of file pdorglqrh.c.

#define Q (   m,
 
)    BLKADDR(Q, double, (m), (n))

Definition at line 18 of file pdorglqrh.c.

#define T (   m,
 
)    BLKADDR(T, double, (m), (n))

Definition at line 19 of file pdorglqrh.c.

#define T2 (   m,
 
)    BLKADDR(T, double, (m), (n)+(A.nt))

Definition at line 20 of file pdorglqrh.c.


Function Documentation

void plasma_pdorglqrh_quark ( PLASMA_desc  A,
PLASMA_desc  Q,
PLASMA_desc  T,
int  BS,
PLASMA_sequence sequence,
PLASMA_request request 
)

Parallel construction of Q using tile V (application to identity; reduction Householder) - dynamic scheduling

Definition at line 25 of file pdorglqrh.c.

References A, BLKLDD, plasma_desc_t::m, plasma_desc_t::mb, min, plasma_desc_t::mt, plasma_desc_t::n, plasma_desc_t::nb, plasma_desc_t::nt, plasma_context_self(), PLASMA_IB, PLASMA_SUCCESS, PlasmaNoTrans, PlasmaRight, Q, plasma_context_struct::quark, QUARK_CORE_dormlq(), QUARK_CORE_dtsmlq(), QUARK_CORE_dttmlq(), plasma_sequence_t::quark_sequence, QUARK_Task_Flag_Set(), Quark_Task_Flags_Initializer, plasma_sequence_t::status, T, T2, and TASK_SEQUENCE.

{
int k, m, n;
int K, N, RD, lastRD;
int ldak;
int ldqm;
int tempkm, tempkmin, tempNn, tempnn, tempmm, tempNRDn;
int ib;
plasma = plasma_context_self();
if (sequence->status != PLASMA_SUCCESS)
return;
QUARK_Task_Flag_Set(&task_flags, TASK_SEQUENCE, (intptr_t)sequence->quark_sequence);
ib = PLASMA_IB;
K = min(A.mt, A.nt);
for (k = K-1; k >= 0; k--) {
tempkm = k == A.mt-1 ? A.m-k*A.mb : A.mb;
ldak = BLKLDD(A, k);
lastRD = 0;
for (RD = BS; RD < A.nt-k; RD *= 2)
lastRD = RD;
for (RD = lastRD; RD >= BS; RD /= 2) {
for (N = k; N+RD < A.nt; N += 2*RD) {
tempNRDn = N+RD == A.nt-1 ? A.n-(N+RD)*A.nb : A.nb;
for (m = 0; m < Q.mt; m++) {
tempmm = m == Q.mt-1 ? Q.m-m*Q.mb : Q.mb;
ldqm = BLKLDD(Q, m );
plasma->quark, &task_flags,
tempmm, Q.nb, tempmm, tempNRDn,
tempkm, ib, T.nb,
Q (m, N ), ldqm,
Q (m, N+RD), ldqm,
A (k, N+RD), ldak,
T2(k, N+RD), T.mb);
}
}
}
for (N = k; N < A.nt; N += BS) {
tempNn = N == A.nt-1 ? A.n-N*A.nb : A.nb;
tempkmin = min(tempkm, tempNn);
for (n = min(N+BS, A.nt)-1; n > N; n--) {
tempnn = n == Q.nt-1 ? Q.n-n*Q.nb : Q.nb;
for (m = 0; m < Q.mt; m++) {
tempmm = m == Q.mt-1 ? Q.m-m*Q.mb : Q.mb;
ldqm = BLKLDD(Q, m);
plasma->quark, &task_flags,
tempmm, Q.nb, tempmm, tempnn,
tempkm, ib, T.nb,
Q(m, N), ldqm,
Q(m, n), ldqm,
A(k, n), ldak,
T(k, n), T.mb);
}
}
for (m = 0; m < Q.mt; m++) {
tempmm = m == Q.mt-1 ? Q.m-m*Q.mb : Q.mb;
ldqm = BLKLDD(Q, m);
plasma->quark, &task_flags,
tempmm, tempNn,
tempkmin, ib, T.nb,
A(k, N), ldak,
T(k, N), T.mb,
Q(m, N), ldqm);
}
}
}
}

Here is the call graph for this function: