CTWatch
February 2006
International Cyberinfrastructure: Activities Around the Globe
Peter Arzberger, University of California, San Diego
Philip Papadopoulos, San Diego Supercomputer Center and University of California, San Diego

1
Introduction

Science is a global enterprise. Its conduct transcends geographic, discipline, and educational levels. The routine ability to work with experts around the world, to use resources distributed in space across international boundaries, and to share and integrate different types of data, knowledge and technology is becoming more realistic. It is the development and deployment of compatible cyberinfrastructures (a.k.a Grid) that link together computers, data stores, and observational equipment via networks and middleware that form the operative IT backbone of international science teams. While, large community projects exist that exploit the Grid (e.g. Large Hadron Collider)1 , international collaboration can and most likely will take place at scales of smaller teams. For example, a multidisciplinary, distributed team of researchers from the University of Zurich, the University of California San Diego, and Monash University in Australia are synthesizing application and grid middleware, using distributed computational resources from the PRAGMA testbed 2, to gain understanding of complex biochemical reactions than can impact the design of new drugs 3 4 5 5a 6. This example and others 7 8 9 demonstrate the value and potential of working with the emerging cyberinfrastructure. Yet, significant effort was required to bring these tools, people and resources together. The current challenge for the Grid community is to make this potential and demonstration a reality, on a routine basis.

Pacific Rim Application and Grid Middleware Assembly (PRAGMA)

Established in 2002, the Pacific Rim Application and Grid Middleware Assembly 10 is an open organization whose focus is how to practically create, support and sustain international science and technology collaborations. Specific experiments are postulated, candidate technologies and people are identified to support these experiments, evaluation is performed in our trans-Pacific routine-use laboratory, and successful solutions are integrated into country-specific software stacks or Global Grid Forum 11 standards. The group harnesses the ingenuity of more than 100 individuals from 25 institutions to create and sustain these long-term activities. PRAGMA plays a critical role as an international conduit for personal interactions, ideas, information, and grid technology. Our multi-faceted framework for collaboration catalyzes and enables new activities because of a culture of openness to new ideas. Our pragmatic approach has lead to new scientific insights 3, enhanced technology 12 13 14, and a fundamental sharing of experiences manifest in our routine-use laboratory.

PRAGMA began with the following observations: global science communities were emerging in increasing numbers; grid software had entered its second phase of implementation; and international networks were expanding rapidly in capacity as fundamental high-speed enablers for data and video communication. But, the integration and productive use of these potential tools was “out of reach” to many scientists. To address the issue of making this technology routinely accessible, a founding set of Pacific Rim Institutions began to work together to share ideas, challenges, software, and possible end-to-end solutions.

Our common-sense approach begins with prospective collaborative science-driven projects (like whole genome annotation, quantum chemistry dynamics, Australian Savannah wildfire simulation, and remote control of large electron microscopes coupled with 3D tomographic reconstruction) so that both people and candidate technologies can be identified to address the scientific needs. Identification is through people-to-people networking, progressively more sophisticated demonstrations, tutorials on software components (e.g. gFarm, MOGAS15, Nimrod, Rocks16, Ninf-G 17 and others) and a consistent face-to-face workshop schedule. When enough ingredients are available to start down the pathway of using the Grid, integrating software to be grid-aware, and/or sharing data, then software is instanced onto our routine-use laboratory. This lab (described in more detail below with its evolution and management challenge described in 18) is where technologists from multiple organizations work together to provide a baseline infrastructure for evaluation. Successful science projects can move to larger resource pools if needed. The entire end-to-end process is possible because of an active international steering committee that continually focuses the group’s multiple efforts for tangible results. Below we describe and illustrate these key components of PRAGMA, together with software distribution and community building.

Pages: 1 2 3

Reference this article
Arzberger, P., Papadopoulos, P. "PRAGMA: Example of Grass-Roots Grid Promoting Collaborative e-Science Teams," CTWatch Quarterly, Volume 2, Number 1, February 2006. http://www.ctwatch.org/quarterly/articles/2006/02/pragma-example-of-grass-roots-grid-promoting-collaborative-e-science-teams/

Any opinions expressed on this site belong to their respective authors and are not necessarily shared by the sponsoring institutions or the National Science Foundation (NSF).

Any trademarks or trade names, registered or otherwise, that appear on this site are the property of their respective owners and, unless noted, do not represent endorsement by the editors, publishers, sponsoring institutions, the National Science Foundation, or any other member of the CTWatch team.

No guarantee is granted by CTWatch that information appearing in articles published by the Quarterly or appearing in the Blog is complete or accurate. Information on this site is not intended for commercial purposes.