![]() |
MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
|
Functions | |
magma_int_t | magma_cpotrs_batched (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloatComplex **dA_array, magma_int_t ldda, magmaFloatComplex **dB_array, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue) |
CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF. | |
magma_int_t | magma_dpotrs_batched (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, double **dA_array, magma_int_t ldda, double **dB_array, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue) |
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by DPOTRF. | |
magma_int_t | magma_spotrs_batched (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, float **dA_array, magma_int_t ldda, float **dB_array, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue) |
SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by SPOTRF. | |
magma_int_t | magma_zpotrs_batched (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex **dA_array, magma_int_t ldda, magmaDoubleComplex **dB_array, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue) |
ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF. | |
magma_int_t magma_cpotrs_batched | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloatComplex ** | dA_array, | ||
magma_int_t | ldda, | ||
magmaFloatComplex ** | dB_array, | ||
magma_int_t | lddb, | ||
magma_int_t | batchCount, | ||
magma_queue_t | queue ) |
CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA_array | Array of pointers, dimension (batchCount). Each is a COMPLEX array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by CPOTRF. |
[in] | ldda | INTEGER The leading dimension of each array A. LDDA >= max(1,N). |
[in,out] | dB_array | Array of pointers, dimension (batchCount). Each is a COMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, each pointer is a right hand side matrix B. On exit, the corresponding solution matrix X. |
[in] | lddb | INTEGER The leading dimension of each array B. LDDB >= max(1,N). |
[in] | batchCount | INTEGER The number of matrices to operate on. |
[in] | queue | magma_queue_t Queue to execute in. |
magma_int_t magma_dpotrs_batched | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
double ** | dA_array, | ||
magma_int_t | ldda, | ||
double ** | dB_array, | ||
magma_int_t | lddb, | ||
magma_int_t | batchCount, | ||
magma_queue_t | queue ) |
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by DPOTRF.
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA_array | Array of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by DPOTRF. |
[in] | ldda | INTEGER The leading dimension of each array A. LDDA >= max(1,N). |
[in,out] | dB_array | Array of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, each pointer is a right hand side matrix B. On exit, the corresponding solution matrix X. |
[in] | lddb | INTEGER The leading dimension of each array B. LDDB >= max(1,N). |
[in] | batchCount | INTEGER The number of matrices to operate on. |
[in] | queue | magma_queue_t Queue to execute in. |
magma_int_t magma_spotrs_batched | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
float ** | dA_array, | ||
magma_int_t | ldda, | ||
float ** | dB_array, | ||
magma_int_t | lddb, | ||
magma_int_t | batchCount, | ||
magma_queue_t | queue ) |
SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by SPOTRF.
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA_array | Array of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by SPOTRF. |
[in] | ldda | INTEGER The leading dimension of each array A. LDDA >= max(1,N). |
[in,out] | dB_array | Array of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDB,NRHS) On entry, each pointer is a right hand side matrix B. On exit, the corresponding solution matrix X. |
[in] | lddb | INTEGER The leading dimension of each array B. LDDB >= max(1,N). |
[in] | batchCount | INTEGER The number of matrices to operate on. |
[in] | queue | magma_queue_t Queue to execute in. |
magma_int_t magma_zpotrs_batched | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDoubleComplex ** | dA_array, | ||
magma_int_t | ldda, | ||
magmaDoubleComplex ** | dB_array, | ||
magma_int_t | lddb, | ||
magma_int_t | batchCount, | ||
magma_queue_t | queue ) |
ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF.
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA_array | Array of pointers, dimension (batchCount). Each is a COMPLEX_16 array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. |
[in] | ldda | INTEGER The leading dimension of each array A. LDDA >= max(1,N). |
[in,out] | dB_array | Array of pointers, dimension (batchCount). Each is a COMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, each pointer is a right hand side matrix B. On exit, the corresponding solution matrix X. |
[in] | lddb | INTEGER The leading dimension of each array B. LDDB >= max(1,N). |
[in] | batchCount | INTEGER The number of matrices to operate on. |
[in] | queue | magma_queue_t Queue to execute in. |