![]() |
MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
|
Functions | |
magma_int_t | magma_cpotrs_expert_gpu_work (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue) |
CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF. | |
magma_int_t | magma_cpotrs_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info) |
CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF. | |
magma_int_t | magma_dpotrs_expert_gpu_work (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue) |
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by DPOTRF. | |
magma_int_t | magma_dpotrs_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info) |
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by DPOTRF. | |
magma_int_t | magma_spotrs_expert_gpu_work (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue) |
SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by SPOTRF. | |
magma_int_t | magma_spotrs_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info) |
SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by SPOTRF. | |
magma_int_t | magma_zpotrs_expert_gpu_work (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info, void *host_work, magma_int_t *lwork_host, void *device_work, magma_int_t *lwork_device, magma_queue_t queue) |
ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF. | |
magma_int_t | magma_zpotrs_gpu (magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info) |
ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF. | |
magma_int_t magma_cpotrs_expert_gpu_work | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloatComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaFloatComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info, | ||
void * | host_work, | ||
magma_int_t * | lwork_host, | ||
void * | device_work, | ||
magma_int_t * | lwork_device, | ||
magma_queue_t | queue ) |
CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
This is an expert API, exposing more controls to the user
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by CPOTRF. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in,out] | dB | COMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
[in,out] | host_work | Workspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned() |
[in,out] | lwork_host | INTEGER pointer The size of the workspace (host_work) in bytes
|
[in,out] | device_work | Workspace, allocated on device (GPU) memory. |
[in,out] | lwork_device | INTEGER pointer The size of the workspace (device_work) in bytes
|
[in] | queue | magma_queue_t
|
magma_int_t magma_cpotrs_gpu | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloatComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaFloatComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info ) |
CPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPOTRF.
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by CPOTRF. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in,out] | dB | COMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
magma_int_t magma_dpotrs_expert_gpu_work | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDouble_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaDouble_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info, | ||
void * | host_work, | ||
magma_int_t * | lwork_host, | ||
void * | device_work, | ||
magma_int_t * | lwork_device, | ||
magma_queue_t | queue ) |
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by DPOTRF.
This is an expert API, exposing more controls to the user
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | DOUBLE PRECISION array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by DPOTRF. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in,out] | dB | DOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
[in,out] | host_work | Workspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned() |
[in,out] | lwork_host | INTEGER pointer The size of the workspace (host_work) in bytes
|
[in,out] | device_work | Workspace, allocated on device (GPU) memory. |
[in,out] | lwork_device | INTEGER pointer The size of the workspace (device_work) in bytes
|
[in] | queue | magma_queue_t
|
magma_int_t magma_dpotrs_gpu | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDouble_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaDouble_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info ) |
DPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by DPOTRF.
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | DOUBLE PRECISION array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by DPOTRF. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in,out] | dB | DOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
magma_int_t magma_spotrs_expert_gpu_work | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloat_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaFloat_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info, | ||
void * | host_work, | ||
magma_int_t * | lwork_host, | ||
void * | device_work, | ||
magma_int_t * | lwork_device, | ||
magma_queue_t | queue ) |
SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by SPOTRF.
This is an expert API, exposing more controls to the user
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | REAL array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by SPOTRF. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in,out] | dB | REAL array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
[in,out] | host_work | Workspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned() |
[in,out] | lwork_host | INTEGER pointer The size of the workspace (host_work) in bytes
|
[in,out] | device_work | Workspace, allocated on device (GPU) memory. |
[in,out] | lwork_device | INTEGER pointer The size of the workspace (device_work) in bytes
|
[in] | queue | magma_queue_t
|
magma_int_t magma_spotrs_gpu | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaFloat_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaFloat_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info ) |
SPOTRS solves a system of linear equations A*X = B with a symmetric positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by SPOTRF.
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | REAL array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by SPOTRF. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in,out] | dB | REAL array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
magma_int_t magma_zpotrs_expert_gpu_work | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDoubleComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaDoubleComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info, | ||
void * | host_work, | ||
magma_int_t * | lwork_host, | ||
void * | device_work, | ||
magma_int_t * | lwork_device, | ||
magma_queue_t | queue ) |
ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF.
This is an expert API, exposing more controls to the user
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX_16 array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in,out] | dB | COMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|
[in,out] | host_work | Workspace, allocated on host (CPU) memory. For faster CPU-GPU communication, user can allocate it as pinned memory using magma_malloc_pinned() |
[in,out] | lwork_host | INTEGER pointer The size of the workspace (host_work) in bytes
|
[in,out] | device_work | Workspace, allocated on device (GPU) memory. |
[in,out] | lwork_device | INTEGER pointer The size of the workspace (device_work) in bytes
|
[in] | queue | magma_queue_t
|
magma_int_t magma_zpotrs_gpu | ( | magma_uplo_t | uplo, |
magma_int_t | n, | ||
magma_int_t | nrhs, | ||
magmaDoubleComplex_ptr | dA, | ||
magma_int_t | ldda, | ||
magmaDoubleComplex_ptr | dB, | ||
magma_int_t | lddb, | ||
magma_int_t * | info ) |
ZPOTRS solves a system of linear equations A*X = B with a Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by ZPOTRF.
[in] | uplo | magma_uplo_t
|
[in] | n | INTEGER The order of the matrix A. N >= 0. |
[in] | nrhs | INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. |
[in] | dA | COMPLEX_16 array on the GPU, dimension (LDDA,N) The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, as computed by ZPOTRF. |
[in] | ldda | INTEGER The leading dimension of the array A. LDDA >= max(1,N). |
[in,out] | dB | COMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. |
[in] | lddb | INTEGER The leading dimension of the array B. LDDB >= max(1,N). |
[out] | info | INTEGER
|