MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
Loading...
Searching...
No Matches

Functions

magma_int_t magma_cpotri (magma_uplo_t uplo, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, magma_int_t *info)
 CPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by CPOTRF.
 
magma_int_t magma_cpotri_gpu (magma_uplo_t uplo, magma_int_t n, magmaFloatComplex_ptr dA, magma_int_t ldda, magma_int_t *info)
 CPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by CPOTRF.
 
magma_int_t magma_dpotri (magma_uplo_t uplo, magma_int_t n, double *A, magma_int_t lda, magma_int_t *info)
 DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
 
magma_int_t magma_dpotri_gpu (magma_uplo_t uplo, magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, magma_int_t *info)
 DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.
 
magma_int_t magma_spotri (magma_uplo_t uplo, magma_int_t n, float *A, magma_int_t lda, magma_int_t *info)
 SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
 
magma_int_t magma_spotri_gpu (magma_uplo_t uplo, magma_int_t n, magmaFloat_ptr dA, magma_int_t ldda, magma_int_t *info)
 SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
 
magma_int_t magma_zpotri (magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info)
 ZPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by ZPOTRF.
 
magma_int_t magma_zpotri_gpu (magma_uplo_t uplo, magma_int_t n, magmaDoubleComplex_ptr dA, magma_int_t ldda, magma_int_t *info)
 ZPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by ZPOTRF.
 

Detailed Description

Function Documentation

◆ magma_cpotri()

magma_int_t magma_cpotri ( magma_uplo_t uplo,
magma_int_t n,
magmaFloatComplex * A,
magma_int_t lda,
magma_int_t * info )

CPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by CPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]ACOMPLEX array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by CPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.

◆ magma_cpotri_gpu()

magma_int_t magma_cpotri_gpu ( magma_uplo_t uplo,
magma_int_t n,
magmaFloatComplex_ptr dA,
magma_int_t ldda,
magma_int_t * info )

CPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by CPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]dACOMPLEX array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by CPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.

◆ magma_dpotri()

magma_int_t magma_dpotri ( magma_uplo_t uplo,
magma_int_t n,
double * A,
magma_int_t lda,
magma_int_t * info )

DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]ADOUBLE PRECISION array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.

◆ magma_dpotri_gpu()

magma_int_t magma_dpotri_gpu ( magma_uplo_t uplo,
magma_int_t n,
magmaDouble_ptr dA,
magma_int_t ldda,
magma_int_t * info )

DPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by DPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.

◆ magma_spotri()

magma_int_t magma_spotri ( magma_uplo_t uplo,
magma_int_t n,
float * A,
magma_int_t lda,
magma_int_t * info )

SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]AREAL array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by SPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.

◆ magma_spotri_gpu()

magma_int_t magma_spotri_gpu ( magma_uplo_t uplo,
magma_int_t n,
magmaFloat_ptr dA,
magma_int_t ldda,
magma_int_t * info )

SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]dAREAL array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by SPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.

◆ magma_zpotri()

magma_int_t magma_zpotri ( magma_uplo_t uplo,
magma_int_t n,
magmaDoubleComplex * A,
magma_int_t lda,
magma_int_t * info )

ZPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by ZPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]ACOMPLEX_16 array, dimension (LDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by ZPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]ldaINTEGER The leading dimension of the array A. LDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.

◆ magma_zpotri_gpu()

magma_int_t magma_zpotri_gpu ( magma_uplo_t uplo,
magma_int_t n,
magmaDoubleComplex_ptr dA,
magma_int_t ldda,
magma_int_t * info )

ZPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by ZPOTRF.

Parameters
[in]uplomagma_uplo_t
  • = MagmaUpper: Upper triangle of A is stored;
  • = MagmaLower: Lower triangle of A is stored.
[in]nINTEGER The order of the matrix A. N >= 0.
[in,out]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) On entry, the triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by ZPOTRF. On exit, the upper or lower triangle of the (symmetric) inverse of A, overwriting the input factor U or L.
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,N).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.