![]() |
MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
|
Functions | |
magma_int_t | magma_dlaex0 (magma_int_t n, double *d, double *e, double *Q, magma_int_t ldq, double *work, magma_int_t *iwork, magmaDouble_ptr dwork, magma_range_t range, double vl, double vu, magma_int_t il, magma_int_t iu, magma_int_t *info) |
DLAEX0 computes all eigenvalues and the choosen eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. | |
magma_int_t | magma_dlaex0_m (magma_int_t ngpu, magma_int_t n, double *d, double *e, double *Q, magma_int_t ldq, double *work, magma_int_t *iwork, magma_range_t range, double vl, double vu, magma_int_t il, magma_int_t iu, magma_int_t *info) |
DLAEX0 computes all eigenvalues and the choosen eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. | |
magma_int_t | magma_slaex0 (magma_int_t n, float *d, float *e, float *Q, magma_int_t ldq, float *work, magma_int_t *iwork, magmaFloat_ptr dwork, magma_range_t range, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *info) |
SLAEX0 computes all eigenvalues and the choosen eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. | |
magma_int_t | magma_slaex0_m (magma_int_t ngpu, magma_int_t n, float *d, float *e, float *Q, magma_int_t ldq, float *work, magma_int_t *iwork, magma_range_t range, float vl, float vu, magma_int_t il, magma_int_t iu, magma_int_t *info) |
SLAEX0 computes all eigenvalues and the choosen eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. | |
magma_int_t magma_dlaex0 | ( | magma_int_t | n, |
double * | d, | ||
double * | e, | ||
double * | Q, | ||
magma_int_t | ldq, | ||
double * | work, | ||
magma_int_t * | iwork, | ||
magmaDouble_ptr | dwork, | ||
magma_range_t | range, | ||
double | vl, | ||
double | vu, | ||
magma_int_t | il, | ||
magma_int_t | iu, | ||
magma_int_t * | info ) |
DLAEX0 computes all eigenvalues and the choosen eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.
[in] | n | INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. |
[in,out] | d | DOUBLE PRECISION array, dimension (N) On entry, the main diagonal of the tridiagonal matrix. On exit, its eigenvalues. |
[in] | e | DOUBLE PRECISION array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. |
[in,out] | Q | DOUBLE PRECISION array, dimension (LDQ, N) On entry, Q will be the identity matrix. On exit, Q contains the eigenvectors of the tridiagonal matrix. |
[in] | ldq | INTEGER The leading dimension of the array Q. If eigenvectors are desired, then LDQ >= max(1,N). In any case, LDQ >= 1. |
work | (workspace) DOUBLE PRECISION array, the dimension of WORK >= 4*N + N**2. | |
iwork | (workspace) INTEGER array, the dimension of IWORK >= 3 + 5*N. | |
dwork | (workspace) DOUBLE PRECISION array, dimension (3*N*N/2+3*N) | |
[in] | range | magma_range_t
|
[in] | vl | DOUBLE PRECISION |
[in] | vu | DOUBLE PRECISION If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. |
[in] | il | INTEGER |
[in] | iu | INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. |
[out] | info | INTEGER
|
Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
magma_int_t magma_dlaex0_m | ( | magma_int_t | ngpu, |
magma_int_t | n, | ||
double * | d, | ||
double * | e, | ||
double * | Q, | ||
magma_int_t | ldq, | ||
double * | work, | ||
magma_int_t * | iwork, | ||
magma_range_t | range, | ||
double | vl, | ||
double | vu, | ||
magma_int_t | il, | ||
magma_int_t | iu, | ||
magma_int_t * | info ) |
DLAEX0 computes all eigenvalues and the choosen eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.
[in] | ngpu | INTEGER Number of GPUs to use. ngpu > 0. |
[in] | n | INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. |
[in,out] | d | DOUBLE PRECISION array, dimension (N) On entry, the main diagonal of the tridiagonal matrix. On exit, its eigenvalues. |
[in] | e | DOUBLE PRECISION array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. |
[in,out] | Q | DOUBLE PRECISION array, dimension (LDQ, N) On entry, Q will be the identity matrix. On exit, Q contains the eigenvectors of the tridiagonal matrix. |
[in] | ldq | INTEGER The leading dimension of the array Q. If eigenvectors are desired, then LDQ >= max(1,N). In any case, LDQ >= 1. |
work | (workspace) DOUBLE PRECISION array, the dimension of WORK >= 4*N + N**2. | |
iwork | (workspace) INTEGER array, the dimension of IWORK >= 3 + 5*N. | |
[in] | range | magma_range_t
|
[in] | vl | DOUBLE PRECISION |
[in] | vu | DOUBLE PRECISION If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. |
[in] | il | INTEGER |
[in] | iu | INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. |
[out] | info | INTEGER
|
Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
magma_int_t magma_slaex0 | ( | magma_int_t | n, |
float * | d, | ||
float * | e, | ||
float * | Q, | ||
magma_int_t | ldq, | ||
float * | work, | ||
magma_int_t * | iwork, | ||
magmaFloat_ptr | dwork, | ||
magma_range_t | range, | ||
float | vl, | ||
float | vu, | ||
magma_int_t | il, | ||
magma_int_t | iu, | ||
magma_int_t * | info ) |
SLAEX0 computes all eigenvalues and the choosen eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.
[in] | n | INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. |
[in,out] | d | REAL array, dimension (N) On entry, the main diagonal of the tridiagonal matrix. On exit, its eigenvalues. |
[in] | e | REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. |
[in,out] | Q | REAL array, dimension (LDQ, N) On entry, Q will be the identity matrix. On exit, Q contains the eigenvectors of the tridiagonal matrix. |
[in] | ldq | INTEGER The leading dimension of the array Q. If eigenvectors are desired, then LDQ >= max(1,N). In any case, LDQ >= 1. |
work | (workspace) REAL array, the dimension of WORK >= 4*N + N**2. | |
iwork | (workspace) INTEGER array, the dimension of IWORK >= 3 + 5*N. | |
dwork | (workspace) REAL array, dimension (3*N*N/2+3*N) | |
[in] | range | magma_range_t
|
[in] | vl | REAL |
[in] | vu | REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. |
[in] | il | INTEGER |
[in] | iu | INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. |
[out] | info | INTEGER
|
Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
magma_int_t magma_slaex0_m | ( | magma_int_t | ngpu, |
magma_int_t | n, | ||
float * | d, | ||
float * | e, | ||
float * | Q, | ||
magma_int_t | ldq, | ||
float * | work, | ||
magma_int_t * | iwork, | ||
magma_range_t | range, | ||
float | vl, | ||
float | vu, | ||
magma_int_t | il, | ||
magma_int_t | iu, | ||
magma_int_t * | info ) |
SLAEX0 computes all eigenvalues and the choosen eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.
[in] | ngpu | INTEGER Number of GPUs to use. ngpu > 0. |
[in] | n | INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. |
[in,out] | d | REAL array, dimension (N) On entry, the main diagonal of the tridiagonal matrix. On exit, its eigenvalues. |
[in] | e | REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. |
[in,out] | Q | REAL array, dimension (LDQ, N) On entry, Q will be the identity matrix. On exit, Q contains the eigenvectors of the tridiagonal matrix. |
[in] | ldq | INTEGER The leading dimension of the array Q. If eigenvectors are desired, then LDQ >= max(1,N). In any case, LDQ >= 1. |
work | (workspace) REAL array, the dimension of WORK >= 4*N + N**2. | |
iwork | (workspace) INTEGER array, the dimension of IWORK >= 3 + 5*N. | |
[in] | range | magma_range_t
|
[in] | vl | REAL |
[in] | vu | REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. |
[in] | il | INTEGER |
[in] | iu | INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. |
[out] | info | INTEGER
|
Based on contributions by Jeff Rutter, Computer Science Division, University of California at Berkeley, USA