![]() |
MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
|
Functions | |
magma_int_t | magma_cgesvd (magma_vec_t jobu, magma_vec_t jobvt, magma_int_t m, magma_int_t n, magmaFloatComplex *A, magma_int_t lda, float *s, magmaFloatComplex *U, magma_int_t ldu, magmaFloatComplex *VT, magma_int_t ldvt, magmaFloatComplex *work, magma_int_t lwork, float *rwork, magma_int_t *info) |
CGESVD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors. | |
magma_int_t | magma_dgesvd (magma_vec_t jobu, magma_vec_t jobvt, magma_int_t m, magma_int_t n, double *A, magma_int_t lda, double *s, double *U, magma_int_t ldu, double *VT, magma_int_t ldvt, double *work, magma_int_t lwork, magma_int_t *info) |
DGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors. | |
magma_int_t | magma_sgesvd (magma_vec_t jobu, magma_vec_t jobvt, magma_int_t m, magma_int_t n, float *A, magma_int_t lda, float *s, float *U, magma_int_t ldu, float *VT, magma_int_t ldvt, float *work, magma_int_t lwork, magma_int_t *info) |
SGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors. | |
magma_int_t | magma_zgesvd (magma_vec_t jobu, magma_vec_t jobvt, magma_int_t m, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, double *s, magmaDoubleComplex *U, magma_int_t ldu, magmaDoubleComplex *VT, magma_int_t ldvt, magmaDoubleComplex *work, magma_int_t lwork, double *rwork, magma_int_t *info) |
ZGESVD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors. | |
magma_int_t magma_cgesvd | ( | magma_vec_t | jobu, |
magma_vec_t | jobvt, | ||
magma_int_t | m, | ||
magma_int_t | n, | ||
magmaFloatComplex * | A, | ||
magma_int_t | lda, | ||
float * | s, | ||
magmaFloatComplex * | U, | ||
magma_int_t | ldu, | ||
magmaFloatComplex * | VT, | ||
magma_int_t | ldvt, | ||
magmaFloatComplex * | work, | ||
magma_int_t | lwork, | ||
float * | rwork, | ||
magma_int_t * | info ) |
CGESVD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors.
The SVD is written
A = U * SIGMA * conjugate-transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**H, not V.
[in] | jobu | magma_vec_t Specifies options for computing all or part of the matrix U:
|
[in] | jobvt | magma_vec_t Specifies options for computing all or part of the matrix V**H:
|
[in] | m | INTEGER The number of rows of the input matrix A. M >= 0. |
[in] | n | INTEGER The number of columns of the input matrix A. N >= 0. |
[in,out] | A | COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit,
|
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[out] | s | REAL array, dimension (min(M,N)) The singular values of A, sorted so that S(i) >= S(i+1). |
[out] | U | COMPLEX array, dimension (LDU,UCOL) (LDU,M) if JOBU = MagmaAllVec or (LDU,min(M,N)) if JOBU = MagmaSomeVec.
|
[in] | ldu | INTEGER The leading dimension of the array U. LDU >= 1; if JOBU = MagmaSomeVec or MagmaAllVec, LDU >= M. |
[out] | VT | COMPLEX array, dimension (LDVT,N)
|
[in] | ldvt | INTEGER The leading dimension of the array VT. LDVT >= 1;
|
[out] | work | (workspace) COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the required LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. If lwork = -1, a workspace query is assumed. The optimal size for the WORK array is calculated and stored in WORK[0], and no other work except argument checking is performed. Let mx = max(M,N) and mn = min(M,N). The threshold for mx >> mn is currently mx >= 1.6*mn. For job: N=None, O=Overwrite, S=Some, A=All. Paths below assume M >= N; for N > M swap jobu and jobvt. Because of varying nb for different subroutines, formulas below are an upper bound. Querying gives an exact number. The optimal block size nb can be obtained through magma_get_dgesvd_nb(M,N). For many cases, there is a fast algorithm, and a slow algorithm that uses less workspace. Here are sizes for both cases. Optimal lwork (fast algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any 2*mn + 2*mn*nb Path 2: jobu=O, jobvt=N mn*mn + 2*mn + 2*mn*nb or mn*mn + max(2*mn + 2*mn*nb, mx*mn) Path 3: jobu=O, jobvt=A,S mn*mn + 2*mn + 2*mn*nb or mn*mn + max(2*mn + 2*mn*nb, mx*mn) Path 4: jobu=S, jobvt=N mn*mn + 2*mn + 2*mn*nb Path 5: jobu=S, jobvt=O 2*mn*mn + 2*mn + 2*mn*nb Path 6: jobu=S, jobvt=A,S mn*mn + 2*mn + 2*mn*nb Path 7: jobu=A, jobvt=N mn*mn + max(2*mn + 2*mn*nb, mn + mx*nb) Path 8: jobu=A, jobvt=O 2*mn*mn + max(2*mn + 2*mn*nb, mn + mx*nb) Path 9: jobu=A, jobvt=A,S mn*mn + max(2*mn + 2*mn*nb, mn + mx*nb) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any 2*mn + (mx + mn)*nb Optimal lwork (slow algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any n/a Path 2: jobu=O, jobvt=N 2*mn + (mx + mn)*nb Path 3-9: 2*mn + max(2*mn*nb, mx*nb) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any n/a MAGMA requires the optimal sizes above, while LAPACK has the same optimal sizes but the minimum sizes below. LAPACK minimum lwork (fast algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any 3*mn Path 2: jobu=O, jobvt=N mn*mn + 3*mn Path 3: jobu=O, jobvt=A,S mn*mn + 3*mn Path 4: jobu=S, jobvt=N mn*mn + 3*mn Path 5: jobu=S, jobvt=O 2*mn*mn + 3*mn Path 6: jobu=S, jobvt=A,S mn*mn + 3*mn Path 7: jobu=A, jobvt=N mn*mn + max(3*mn, mn + mx) Path 8: jobu=A, jobvt=O 2*mn*mn + max(3*mn, mn + mx) Path 9: jobu=A, jobvt=A,S mn*mn + max(3*mn, mn + mx) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any 2*mn + mx LAPACK minimum lwork (slow algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any n/a Path 2-9: 2*mn + mx for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any n/a |
rwork | (workspace) REAL array, dimension (5*min(M,N)) On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the unconverged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies A = U * B * VT, so it has the same singular values as A, and singular vectors related by U and VT. | |
[out] | info | INTEGER
|
magma_int_t magma_dgesvd | ( | magma_vec_t | jobu, |
magma_vec_t | jobvt, | ||
magma_int_t | m, | ||
magma_int_t | n, | ||
double * | A, | ||
magma_int_t | lda, | ||
double * | s, | ||
double * | U, | ||
magma_int_t | ldu, | ||
double * | VT, | ||
magma_int_t | ldvt, | ||
double * | work, | ||
magma_int_t | lwork, | ||
magma_int_t * | info ) |
DGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**T, not V.
[in] | jobu | magma_vec_t Specifies options for computing all or part of the matrix U:
|
[in] | jobvt | magma_vec_t Specifies options for computing all or part of the matrix V**T:
|
[in] | m | INTEGER The number of rows of the input matrix A. M >= 0. |
[in] | n | INTEGER The number of columns of the input matrix A. N >= 0. |
[in,out] | A | DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit,
|
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[out] | s | DOUBLE PRECISION array, dimension (min(M,N)) The singular values of A, sorted so that S(i) >= S(i+1). |
[out] | U | DOUBLE PRECISION array, dimension (LDU,UCOL) (LDU,M) if JOBU = MagmaAllVec or (LDU,min(M,N)) if JOBU = MagmaSomeVec.
|
[in] | ldu | INTEGER The leading dimension of the array U. LDU >= 1; if JOBU = MagmaSomeVec or MagmaAllVec, LDU >= M. |
[out] | VT | DOUBLE PRECISION array, dimension (LDVT,N)
|
[in] | ldvt | INTEGER The leading dimension of the array VT. LDVT >= 1;
|
[out] | work | (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the required LWORK. if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies A = U * B * VT, so it has the same singular values as A, and singular vectors related by U and VT. |
[in] | lwork | INTEGER The dimension of the array WORK. If lwork = -1, a workspace query is assumed. The optimal size for the WORK array is calculated and stored in WORK[0], and no other work except argument checking is performed. Let mx = max(M,N) and mn = min(M,N). The threshold for mx >> mn is currently mx >= 1.6*mn. For job: N=None, O=Overwrite, S=Some, A=All. Paths below assume M >= N; for N > M swap jobu and jobvt. Because of varying nb for different subroutines, formulas below are an upper bound. Querying gives an exact number. The optimal block size nb can be obtained through magma_get_dgesvd_nb(M,N). For many cases, there is a fast algorithm, and a slow algorithm that uses less workspace. Here are sizes for both cases. Optimal lwork (fast algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any 3*mn + 2*mn*nb Path 2: jobu=O, jobvt=N mn*mn + 3*mn + 2*mn*nb or mn*mn + max(3*mn + 2*mn*nb, mn + mx*mn) Path 3: jobu=O, jobvt=A,S mn*mn + 3*mn + 2*mn*nb or mn*mn + max(3*mn + 2*mn*nb, mn + mx*mn) Path 4: jobu=S, jobvt=N mn*mn + 3*mn + 2*mn*nb Path 5: jobu=S, jobvt=O 2*mn*mn + 3*mn + 2*mn*nb Path 6: jobu=S, jobvt=A,S mn*mn + 3*mn + 2*mn*nb Path 7: jobu=A, jobvt=N mn*mn + max(3*mn + 2*mn*nb, mn + mx*nb) Path 8: jobu=A, jobvt=O 2*mn*mn + max(3*mn + 2*mn*nb, mn + mx*nb) Path 9: jobu=A, jobvt=A,S mn*mn + max(3*mn + 2*mn*nb, mn + mx*nb) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any 3*mn + (mx + mn)*nb Optimal lwork (slow algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any n/a Path 2: jobu=O, jobvt=N 3*mn + (mx + mn)*nb Path 3-9: 3*mn + max(2*mn*nb, mx*nb) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any n/a MAGMA requires the optimal sizes above, while LAPACK has the same optimal sizes but the minimum sizes below. LAPACK minimum lwork (fast algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any 5*mn Path 2: jobu=O, jobvt=N mn*mn + 5*mn Path 3: jobu=O, jobvt=A,S mn*mn + 5*mn Path 4: jobu=S, jobvt=N mn*mn + 5*mn Path 5: jobu=S, jobvt=O 2*mn*mn + 5*mn Path 6: jobu=S, jobvt=A,S mn*mn + 5*mn Path 7: jobu=A, jobvt=N mn*mn + max(5*mn, mn + mx) Path 8: jobu=A, jobvt=O 2*mn*mn + max(5*mn, mn + mx) Path 9: jobu=A, jobvt=A,S mn*mn + max(5*mn, mn + mx) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any max(3*mn + mx, 5*mn) LAPACK minimum lwork (slow algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any n/a Path 2-9: max(3*mn + mx, 5*mn) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any n/a |
[out] | info | INTEGER
|
magma_int_t magma_sgesvd | ( | magma_vec_t | jobu, |
magma_vec_t | jobvt, | ||
magma_int_t | m, | ||
magma_int_t | n, | ||
float * | A, | ||
magma_int_t | lda, | ||
float * | s, | ||
float * | U, | ||
magma_int_t | ldu, | ||
float * | VT, | ||
magma_int_t | ldvt, | ||
float * | work, | ||
magma_int_t | lwork, | ||
magma_int_t * | info ) |
SGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**T, not V.
[in] | jobu | magma_vec_t Specifies options for computing all or part of the matrix U:
|
[in] | jobvt | magma_vec_t Specifies options for computing all or part of the matrix V**T:
|
[in] | m | INTEGER The number of rows of the input matrix A. M >= 0. |
[in] | n | INTEGER The number of columns of the input matrix A. N >= 0. |
[in,out] | A | REAL array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit,
|
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[out] | s | REAL array, dimension (min(M,N)) The singular values of A, sorted so that S(i) >= S(i+1). |
[out] | U | REAL array, dimension (LDU,UCOL) (LDU,M) if JOBU = MagmaAllVec or (LDU,min(M,N)) if JOBU = MagmaSomeVec.
|
[in] | ldu | INTEGER The leading dimension of the array U. LDU >= 1; if JOBU = MagmaSomeVec or MagmaAllVec, LDU >= M. |
[out] | VT | REAL array, dimension (LDVT,N)
|
[in] | ldvt | INTEGER The leading dimension of the array VT. LDVT >= 1;
|
[out] | work | (workspace) REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the required LWORK. if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies A = U * B * VT, so it has the same singular values as A, and singular vectors related by U and VT. |
[in] | lwork | INTEGER The dimension of the array WORK. If lwork = -1, a workspace query is assumed. The optimal size for the WORK array is calculated and stored in WORK[0], and no other work except argument checking is performed. Let mx = max(M,N) and mn = min(M,N). The threshold for mx >> mn is currently mx >= 1.6*mn. For job: N=None, O=Overwrite, S=Some, A=All. Paths below assume M >= N; for N > M swap jobu and jobvt. Because of varying nb for different subroutines, formulas below are an upper bound. Querying gives an exact number. The optimal block size nb can be obtained through magma_get_sgesvd_nb(M,N). For many cases, there is a fast algorithm, and a slow algorithm that uses less workspace. Here are sizes for both cases. Optimal lwork (fast algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any 3*mn + 2*mn*nb Path 2: jobu=O, jobvt=N mn*mn + 3*mn + 2*mn*nb or mn*mn + max(3*mn + 2*mn*nb, mn + mx*mn) Path 3: jobu=O, jobvt=A,S mn*mn + 3*mn + 2*mn*nb or mn*mn + max(3*mn + 2*mn*nb, mn + mx*mn) Path 4: jobu=S, jobvt=N mn*mn + 3*mn + 2*mn*nb Path 5: jobu=S, jobvt=O 2*mn*mn + 3*mn + 2*mn*nb Path 6: jobu=S, jobvt=A,S mn*mn + 3*mn + 2*mn*nb Path 7: jobu=A, jobvt=N mn*mn + max(3*mn + 2*mn*nb, mn + mx*nb) Path 8: jobu=A, jobvt=O 2*mn*mn + max(3*mn + 2*mn*nb, mn + mx*nb) Path 9: jobu=A, jobvt=A,S mn*mn + max(3*mn + 2*mn*nb, mn + mx*nb) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any 3*mn + (mx + mn)*nb Optimal lwork (slow algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any n/a Path 2: jobu=O, jobvt=N 3*mn + (mx + mn)*nb Path 3-9: 3*mn + max(2*mn*nb, mx*nb) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any n/a MAGMA requires the optimal sizes above, while LAPACK has the same optimal sizes but the minimum sizes below. LAPACK minimum lwork (fast algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any 5*mn Path 2: jobu=O, jobvt=N mn*mn + 5*mn Path 3: jobu=O, jobvt=A,S mn*mn + 5*mn Path 4: jobu=S, jobvt=N mn*mn + 5*mn Path 5: jobu=S, jobvt=O 2*mn*mn + 5*mn Path 6: jobu=S, jobvt=A,S mn*mn + 5*mn Path 7: jobu=A, jobvt=N mn*mn + max(5*mn, mn + mx) Path 8: jobu=A, jobvt=O 2*mn*mn + max(5*mn, mn + mx) Path 9: jobu=A, jobvt=A,S mn*mn + max(5*mn, mn + mx) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any max(3*mn + mx, 5*mn) LAPACK minimum lwork (slow algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any n/a Path 2-9: max(3*mn + mx, 5*mn) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any n/a |
[out] | info | INTEGER
|
magma_int_t magma_zgesvd | ( | magma_vec_t | jobu, |
magma_vec_t | jobvt, | ||
magma_int_t | m, | ||
magma_int_t | n, | ||
magmaDoubleComplex * | A, | ||
magma_int_t | lda, | ||
double * | s, | ||
magmaDoubleComplex * | U, | ||
magma_int_t | ldu, | ||
magmaDoubleComplex * | VT, | ||
magma_int_t | ldvt, | ||
magmaDoubleComplex * | work, | ||
magma_int_t | lwork, | ||
double * | rwork, | ||
magma_int_t * | info ) |
ZGESVD computes the singular value decomposition (SVD) of a complex M-by-N matrix A, optionally computing the left and/or right singular vectors.
The SVD is written
A = U * SIGMA * conjugate-transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M unitary matrix, and V is an N-by-N unitary matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A.
Note that the routine returns VT = V**H, not V.
[in] | jobu | magma_vec_t Specifies options for computing all or part of the matrix U:
|
[in] | jobvt | magma_vec_t Specifies options for computing all or part of the matrix V**H:
|
[in] | m | INTEGER The number of rows of the input matrix A. M >= 0. |
[in] | n | INTEGER The number of columns of the input matrix A. N >= 0. |
[in,out] | A | COMPLEX_16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit,
|
[in] | lda | INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[out] | s | DOUBLE PRECISION array, dimension (min(M,N)) The singular values of A, sorted so that S(i) >= S(i+1). |
[out] | U | COMPLEX_16 array, dimension (LDU,UCOL) (LDU,M) if JOBU = MagmaAllVec or (LDU,min(M,N)) if JOBU = MagmaSomeVec.
|
[in] | ldu | INTEGER The leading dimension of the array U. LDU >= 1; if JOBU = MagmaSomeVec or MagmaAllVec, LDU >= M. |
[out] | VT | COMPLEX_16 array, dimension (LDVT,N)
|
[in] | ldvt | INTEGER The leading dimension of the array VT. LDVT >= 1;
|
[out] | work | (workspace) COMPLEX_16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the required LWORK. |
[in] | lwork | INTEGER The dimension of the array WORK. If lwork = -1, a workspace query is assumed. The optimal size for the WORK array is calculated and stored in WORK[0], and no other work except argument checking is performed. Let mx = max(M,N) and mn = min(M,N). The threshold for mx >> mn is currently mx >= 1.6*mn. For job: N=None, O=Overwrite, S=Some, A=All. Paths below assume M >= N; for N > M swap jobu and jobvt. Because of varying nb for different subroutines, formulas below are an upper bound. Querying gives an exact number. The optimal block size nb can be obtained through magma_get_dgesvd_nb(M,N). For many cases, there is a fast algorithm, and a slow algorithm that uses less workspace. Here are sizes for both cases. Optimal lwork (fast algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any 2*mn + 2*mn*nb Path 2: jobu=O, jobvt=N mn*mn + 2*mn + 2*mn*nb or mn*mn + max(2*mn + 2*mn*nb, mx*mn) Path 3: jobu=O, jobvt=A,S mn*mn + 2*mn + 2*mn*nb or mn*mn + max(2*mn + 2*mn*nb, mx*mn) Path 4: jobu=S, jobvt=N mn*mn + 2*mn + 2*mn*nb Path 5: jobu=S, jobvt=O 2*mn*mn + 2*mn + 2*mn*nb Path 6: jobu=S, jobvt=A,S mn*mn + 2*mn + 2*mn*nb Path 7: jobu=A, jobvt=N mn*mn + max(2*mn + 2*mn*nb, mn + mx*nb) Path 8: jobu=A, jobvt=O 2*mn*mn + max(2*mn + 2*mn*nb, mn + mx*nb) Path 9: jobu=A, jobvt=A,S mn*mn + max(2*mn + 2*mn*nb, mn + mx*nb) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any 2*mn + (mx + mn)*nb Optimal lwork (slow algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any n/a Path 2: jobu=O, jobvt=N 2*mn + (mx + mn)*nb Path 3-9: 2*mn + max(2*mn*nb, mx*nb) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any n/a MAGMA requires the optimal sizes above, while LAPACK has the same optimal sizes but the minimum sizes below. LAPACK minimum lwork (fast algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any 3*mn Path 2: jobu=O, jobvt=N mn*mn + 3*mn Path 3: jobu=O, jobvt=A,S mn*mn + 3*mn Path 4: jobu=S, jobvt=N mn*mn + 3*mn Path 5: jobu=S, jobvt=O 2*mn*mn + 3*mn Path 6: jobu=S, jobvt=A,S mn*mn + 3*mn Path 7: jobu=A, jobvt=N mn*mn + max(3*mn, mn + mx) Path 8: jobu=A, jobvt=O 2*mn*mn + max(3*mn, mn + mx) Path 9: jobu=A, jobvt=A,S mn*mn + max(3*mn, mn + mx) for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any 2*mn + mx LAPACK minimum lwork (slow algorithm) for mx >> mn: Path 1: jobu=N, jobvt=any n/a Path 2-9: 2*mn + mx for mx >= mn, but not mx >> mn: Path 10: jobu=any, jobvt=any n/a |
rwork | (workspace) DOUBLE PRECISION array, dimension (5*min(M,N)) On exit, if INFO > 0, RWORK(1:MIN(M,N)-1) contains the unconverged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is in S (not necessarily sorted). B satisfies A = U * B * VT, so it has the same singular values as A, and singular vectors related by U and VT. | |
[out] | info | INTEGER
|