MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
Loading...
Searching...
No Matches
gesv: Solves Ax = b using LU factorization - no pivoting (driver)

Functions

magma_int_t magma_cgesv_nopiv_gpu (magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaFloatComplex_ptr dB, magma_int_t lddb, magma_int_t *info)
 CGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.
 
magma_int_t magma_dgesv_nopiv_gpu (magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, magmaDouble_ptr dB, magma_int_t lddb, magma_int_t *info)
 DGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.
 
magma_int_t magma_sgesv_nopiv_gpu (magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, magmaFloat_ptr dB, magma_int_t lddb, magma_int_t *info)
 SGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.
 
magma_int_t magma_zgesv_nopiv_gpu (magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magmaDoubleComplex_ptr dB, magma_int_t lddb, magma_int_t *info)
 ZGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.
 

Detailed Description

Function Documentation

◆ magma_cgesv_nopiv_gpu()

magma_int_t magma_cgesv_nopiv_gpu ( magma_int_t n,
magma_int_t nrhs,
magmaFloatComplex_ptr dA,
magma_int_t ldda,
magmaFloatComplex_ptr dB,
magma_int_t lddb,
magma_int_t * info )

CGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as A = L * U, where L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dACOMPLEX array on the GPU, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L and U from the factorization A = L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBCOMPLEX array on the GPU, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_dgesv_nopiv_gpu()

magma_int_t magma_dgesv_nopiv_gpu ( magma_int_t n,
magma_int_t nrhs,
magmaDouble_ptr dA,
magma_int_t ldda,
magmaDouble_ptr dB,
magma_int_t lddb,
magma_int_t * info )

DGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as A = L * U, where L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dADOUBLE PRECISION array on the GPU, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L and U from the factorization A = L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBDOUBLE PRECISION array on the GPU, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_sgesv_nopiv_gpu()

magma_int_t magma_sgesv_nopiv_gpu ( magma_int_t n,
magma_int_t nrhs,
magmaFloat_ptr dA,
magma_int_t ldda,
magmaFloat_ptr dB,
magma_int_t lddb,
magma_int_t * info )

SGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as A = L * U, where L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dAREAL array on the GPU, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L and U from the factorization A = L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBREAL array on the GPU, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_zgesv_nopiv_gpu()

magma_int_t magma_zgesv_nopiv_gpu ( magma_int_t n,
magma_int_t nrhs,
magmaDoubleComplex_ptr dA,
magma_int_t ldda,
magmaDoubleComplex_ptr dB,
magma_int_t lddb,
magma_int_t * info )

ZGESV solves a system of linear equations A * X = B where A is a general n-by-n matrix and X and B are n-by-nrhs matrices.

The LU decomposition with no pivoting is used to factor A as A = L * U, where L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B.

Parameters
[in]nINTEGER The order of the matrix A. n >= 0.
[in]nrhsINTEGER The number of right hand sides, i.e., the number of columns of the matrix B. nrhs >= 0.
[in,out]dACOMPLEX_16 array on the GPU, dimension (ldda,n). On entry, the n-by-n matrix to be factored. On exit, the factors L and U from the factorization A = L*U; the unit diagonal elements of L are not stored.
[in]lddaINTEGER The leading dimension of the array A. ldda >= max(1,n).
[in,out]dBCOMPLEX_16 array on the GPU, dimension (lddb,nrhs) On entry, the right hand side matrix B. On exit, the solution matrix X.
[in]lddbINTEGER The leading dimension of the array B. lddb >= max(1,n).
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value