MAGMA 2.9.0
Matrix Algebra for GPU and Multicore Architectures
Loading...
Searching...
No Matches

Functions

magma_int_t magma_cgeqrs3_gpu (magma_int_t m, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaFloatComplex const *tau, magmaFloatComplex_ptr dT, magmaFloatComplex_ptr dB, magma_int_t lddb, magmaFloatComplex *hwork, magma_int_t lwork, magma_int_t *info)
 CGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by CGEQRF3_GPU.
 
magma_int_t magma_cgeqrs_gpu (magma_int_t m, magma_int_t n, magma_int_t nrhs, magmaFloatComplex_const_ptr dA, magma_int_t ldda, magmaFloatComplex const *tau, magmaFloatComplex_ptr dT, magmaFloatComplex_ptr dB, magma_int_t lddb, magmaFloatComplex *hwork, magma_int_t lwork, magma_int_t *info)
 CGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by CGEQRF_GPU.
 
magma_int_t magma_dgeqrs3_gpu (magma_int_t m, magma_int_t n, magma_int_t nrhs, magmaDouble_ptr dA, magma_int_t ldda, double const *tau, magmaDouble_ptr dT, magmaDouble_ptr dB, magma_int_t lddb, double *hwork, magma_int_t lwork, magma_int_t *info)
 DGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by DGEQRF3_GPU.
 
magma_int_t magma_dgeqrs_gpu (magma_int_t m, magma_int_t n, magma_int_t nrhs, magmaDouble_const_ptr dA, magma_int_t ldda, double const *tau, magmaDouble_ptr dT, magmaDouble_ptr dB, magma_int_t lddb, double *hwork, magma_int_t lwork, magma_int_t *info)
 DGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by DGEQRF_GPU.
 
magma_int_t magma_sgeqrs3_gpu (magma_int_t m, magma_int_t n, magma_int_t nrhs, magmaFloat_ptr dA, magma_int_t ldda, float const *tau, magmaFloat_ptr dT, magmaFloat_ptr dB, magma_int_t lddb, float *hwork, magma_int_t lwork, magma_int_t *info)
 SGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by SGEQRF3_GPU.
 
magma_int_t magma_sgeqrs_gpu (magma_int_t m, magma_int_t n, magma_int_t nrhs, magmaFloat_const_ptr dA, magma_int_t ldda, float const *tau, magmaFloat_ptr dT, magmaFloat_ptr dB, magma_int_t lddb, float *hwork, magma_int_t lwork, magma_int_t *info)
 SGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by SGEQRF_GPU.
 
magma_int_t magma_zgeqrs3_gpu (magma_int_t m, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_ptr dA, magma_int_t ldda, magmaDoubleComplex const *tau, magmaDoubleComplex_ptr dT, magmaDoubleComplex_ptr dB, magma_int_t lddb, magmaDoubleComplex *hwork, magma_int_t lwork, magma_int_t *info)
 ZGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by ZGEQRF3_GPU.
 
magma_int_t magma_zgeqrs_gpu (magma_int_t m, magma_int_t n, magma_int_t nrhs, magmaDoubleComplex_const_ptr dA, magma_int_t ldda, magmaDoubleComplex const *tau, magmaDoubleComplex_ptr dT, magmaDoubleComplex_ptr dB, magma_int_t lddb, magmaDoubleComplex *hwork, magma_int_t lwork, magma_int_t *info)
 ZGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by ZGEQRF_GPU.
 

Detailed Description

Function Documentation

◆ magma_cgeqrs3_gpu()

magma_int_t magma_cgeqrs3_gpu ( magma_int_t m,
magma_int_t n,
magma_int_t nrhs,
magmaFloatComplex_ptr dA,
magma_int_t ldda,
magmaFloatComplex const * tau,
magmaFloatComplex_ptr dT,
magmaFloatComplex_ptr dB,
magma_int_t lddb,
magmaFloatComplex * hwork,
magma_int_t lwork,
magma_int_t * info )

CGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by CGEQRF3_GPU.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. M >= N >= 0.
[in]nrhsINTEGER The number of columns of the matrix C. NRHS >= 0.
[in]dACOMPLEX array on the GPU, dimension (LDDA,N) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,n, as returned by CGEQRF3_GPU in the first n columns of its array argument A. dA is modified by the routine but restored on exit.
[in]lddaINTEGER The leading dimension of the array A, LDDA >= M.
[in]tauCOMPLEX array, dimension (N) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by MAGMA_CGEQRF_GPU.
[in,out]dBCOMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the M-by-NRHS matrix C. On exit, the N-by-NRHS solution matrix X.
[in,out]dTCOMPLEX array that is the output (the 6th argument) of magma_cgeqrf_gpu of size 2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS). The array starts with a block of size MIN(M,N)*NB that stores the triangular T matrices used in the QR factorization, followed by MIN(M,N)*NB block storing the diagonal block matrices for the R matrix, followed by work space of size (ceil(N/32)*32)* MAX(NB, NRHS).
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= M.
[out]hwork(workspace) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK, LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB, where NB is the blocksize given by magma_get_cgeqrf_nb( M, N ).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the HWORK array, returns this value as the first entry of the WORK array.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_cgeqrs_gpu()

magma_int_t magma_cgeqrs_gpu ( magma_int_t m,
magma_int_t n,
magma_int_t nrhs,
magmaFloatComplex_const_ptr dA,
magma_int_t ldda,
magmaFloatComplex const * tau,
magmaFloatComplex_ptr dT,
magmaFloatComplex_ptr dB,
magma_int_t lddb,
magmaFloatComplex * hwork,
magma_int_t lwork,
magma_int_t * info )

CGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by CGEQRF_GPU.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. M >= N >= 0.
[in]nrhsINTEGER The number of columns of the matrix C. NRHS >= 0.
[in]dACOMPLEX array on the GPU, dimension (LDDA,N) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,n, as returned by CGEQRF_GPU in the first n columns of its array argument A.
[in]lddaINTEGER The leading dimension of the array A, LDDA >= M.
[in]tauCOMPLEX array, dimension (N) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by MAGMA_CGEQRF_GPU.
[in,out]dBCOMPLEX array on the GPU, dimension (LDDB,NRHS) On entry, the M-by-NRHS matrix C. On exit, the N-by-NRHS solution matrix X.
[in,out]dTCOMPLEX array that is the output (the 6th argument) of magma_cgeqrf_gpu of size 2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS). The array starts with a block of size MIN(M,N)*NB that stores the triangular T matrices used in the QR factorization, followed by MIN(M,N)*NB block storing the diagonal block inverses for the R matrix, followed by work space of size (ceil(N/32)*32)* MAX(NB, NRHS).
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= M.
[out]hwork(workspace) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK, LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB, where NB is the blocksize given by magma_get_cgeqrf_nb( M, N ).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the HWORK array, returns this value as the first entry of the WORK array.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_dgeqrs3_gpu()

magma_int_t magma_dgeqrs3_gpu ( magma_int_t m,
magma_int_t n,
magma_int_t nrhs,
magmaDouble_ptr dA,
magma_int_t ldda,
double const * tau,
magmaDouble_ptr dT,
magmaDouble_ptr dB,
magma_int_t lddb,
double * hwork,
magma_int_t lwork,
magma_int_t * info )

DGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by DGEQRF3_GPU.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. M >= N >= 0.
[in]nrhsINTEGER The number of columns of the matrix C. NRHS >= 0.
[in]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,n, as returned by DGEQRF3_GPU in the first n columns of its array argument A. dA is modified by the routine but restored on exit.
[in]lddaINTEGER The leading dimension of the array A, LDDA >= M.
[in]tauDOUBLE PRECISION array, dimension (N) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by MAGMA_DGEQRF_GPU.
[in,out]dBDOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the M-by-NRHS matrix C. On exit, the N-by-NRHS solution matrix X.
[in,out]dTDOUBLE PRECISION array that is the output (the 6th argument) of magma_dgeqrf_gpu of size 2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS). The array starts with a block of size MIN(M,N)*NB that stores the triangular T matrices used in the QR factorization, followed by MIN(M,N)*NB block storing the diagonal block matrices for the R matrix, followed by work space of size (ceil(N/32)*32)* MAX(NB, NRHS).
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= M.
[out]hwork(workspace) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK, LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB, where NB is the blocksize given by magma_get_dgeqrf_nb( M, N ).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the HWORK array, returns this value as the first entry of the WORK array.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_dgeqrs_gpu()

magma_int_t magma_dgeqrs_gpu ( magma_int_t m,
magma_int_t n,
magma_int_t nrhs,
magmaDouble_const_ptr dA,
magma_int_t ldda,
double const * tau,
magmaDouble_ptr dT,
magmaDouble_ptr dB,
magma_int_t lddb,
double * hwork,
magma_int_t lwork,
magma_int_t * info )

DGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by DGEQRF_GPU.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. M >= N >= 0.
[in]nrhsINTEGER The number of columns of the matrix C. NRHS >= 0.
[in]dADOUBLE PRECISION array on the GPU, dimension (LDDA,N) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,n, as returned by DGEQRF_GPU in the first n columns of its array argument A.
[in]lddaINTEGER The leading dimension of the array A, LDDA >= M.
[in]tauDOUBLE PRECISION array, dimension (N) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by MAGMA_DGEQRF_GPU.
[in,out]dBDOUBLE PRECISION array on the GPU, dimension (LDDB,NRHS) On entry, the M-by-NRHS matrix C. On exit, the N-by-NRHS solution matrix X.
[in,out]dTDOUBLE PRECISION array that is the output (the 6th argument) of magma_dgeqrf_gpu of size 2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS). The array starts with a block of size MIN(M,N)*NB that stores the triangular T matrices used in the QR factorization, followed by MIN(M,N)*NB block storing the diagonal block inverses for the R matrix, followed by work space of size (ceil(N/32)*32)* MAX(NB, NRHS).
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= M.
[out]hwork(workspace) DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK, LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB, where NB is the blocksize given by magma_get_dgeqrf_nb( M, N ).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the HWORK array, returns this value as the first entry of the WORK array.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_sgeqrs3_gpu()

magma_int_t magma_sgeqrs3_gpu ( magma_int_t m,
magma_int_t n,
magma_int_t nrhs,
magmaFloat_ptr dA,
magma_int_t ldda,
float const * tau,
magmaFloat_ptr dT,
magmaFloat_ptr dB,
magma_int_t lddb,
float * hwork,
magma_int_t lwork,
magma_int_t * info )

SGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by SGEQRF3_GPU.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. M >= N >= 0.
[in]nrhsINTEGER The number of columns of the matrix C. NRHS >= 0.
[in]dAREAL array on the GPU, dimension (LDDA,N) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,n, as returned by SGEQRF3_GPU in the first n columns of its array argument A. dA is modified by the routine but restored on exit.
[in]lddaINTEGER The leading dimension of the array A, LDDA >= M.
[in]tauREAL array, dimension (N) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by MAGMA_SGEQRF_GPU.
[in,out]dBREAL array on the GPU, dimension (LDDB,NRHS) On entry, the M-by-NRHS matrix C. On exit, the N-by-NRHS solution matrix X.
[in,out]dTREAL array that is the output (the 6th argument) of magma_sgeqrf_gpu of size 2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS). The array starts with a block of size MIN(M,N)*NB that stores the triangular T matrices used in the QR factorization, followed by MIN(M,N)*NB block storing the diagonal block matrices for the R matrix, followed by work space of size (ceil(N/32)*32)* MAX(NB, NRHS).
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= M.
[out]hwork(workspace) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK, LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB, where NB is the blocksize given by magma_get_sgeqrf_nb( M, N ).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the HWORK array, returns this value as the first entry of the WORK array.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_sgeqrs_gpu()

magma_int_t magma_sgeqrs_gpu ( magma_int_t m,
magma_int_t n,
magma_int_t nrhs,
magmaFloat_const_ptr dA,
magma_int_t ldda,
float const * tau,
magmaFloat_ptr dT,
magmaFloat_ptr dB,
magma_int_t lddb,
float * hwork,
magma_int_t lwork,
magma_int_t * info )

SGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by SGEQRF_GPU.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. M >= N >= 0.
[in]nrhsINTEGER The number of columns of the matrix C. NRHS >= 0.
[in]dAREAL array on the GPU, dimension (LDDA,N) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,n, as returned by SGEQRF_GPU in the first n columns of its array argument A.
[in]lddaINTEGER The leading dimension of the array A, LDDA >= M.
[in]tauREAL array, dimension (N) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by MAGMA_SGEQRF_GPU.
[in,out]dBREAL array on the GPU, dimension (LDDB,NRHS) On entry, the M-by-NRHS matrix C. On exit, the N-by-NRHS solution matrix X.
[in,out]dTREAL array that is the output (the 6th argument) of magma_sgeqrf_gpu of size 2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS). The array starts with a block of size MIN(M,N)*NB that stores the triangular T matrices used in the QR factorization, followed by MIN(M,N)*NB block storing the diagonal block inverses for the R matrix, followed by work space of size (ceil(N/32)*32)* MAX(NB, NRHS).
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= M.
[out]hwork(workspace) REAL array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK, LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB, where NB is the blocksize given by magma_get_sgeqrf_nb( M, N ).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the HWORK array, returns this value as the first entry of the WORK array.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_zgeqrs3_gpu()

magma_int_t magma_zgeqrs3_gpu ( magma_int_t m,
magma_int_t n,
magma_int_t nrhs,
magmaDoubleComplex_ptr dA,
magma_int_t ldda,
magmaDoubleComplex const * tau,
magmaDoubleComplex_ptr dT,
magmaDoubleComplex_ptr dB,
magma_int_t lddb,
magmaDoubleComplex * hwork,
magma_int_t lwork,
magma_int_t * info )

ZGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by ZGEQRF3_GPU.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. M >= N >= 0.
[in]nrhsINTEGER The number of columns of the matrix C. NRHS >= 0.
[in]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,n, as returned by ZGEQRF3_GPU in the first n columns of its array argument A. dA is modified by the routine but restored on exit.
[in]lddaINTEGER The leading dimension of the array A, LDDA >= M.
[in]tauCOMPLEX_16 array, dimension (N) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by MAGMA_ZGEQRF_GPU.
[in,out]dBCOMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the M-by-NRHS matrix C. On exit, the N-by-NRHS solution matrix X.
[in,out]dTCOMPLEX_16 array that is the output (the 6th argument) of magma_zgeqrf_gpu of size 2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS). The array starts with a block of size MIN(M,N)*NB that stores the triangular T matrices used in the QR factorization, followed by MIN(M,N)*NB block storing the diagonal block matrices for the R matrix, followed by work space of size (ceil(N/32)*32)* MAX(NB, NRHS).
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= M.
[out]hwork(workspace) COMPLEX_16 array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK, LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB, where NB is the blocksize given by magma_get_zgeqrf_nb( M, N ).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the HWORK array, returns this value as the first entry of the WORK array.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value

◆ magma_zgeqrs_gpu()

magma_int_t magma_zgeqrs_gpu ( magma_int_t m,
magma_int_t n,
magma_int_t nrhs,
magmaDoubleComplex_const_ptr dA,
magma_int_t ldda,
magmaDoubleComplex const * tau,
magmaDoubleComplex_ptr dT,
magmaDoubleComplex_ptr dB,
magma_int_t lddb,
magmaDoubleComplex * hwork,
magma_int_t lwork,
magma_int_t * info )

ZGEQRS solves the least squares problem min || A*X - C || using the QR factorization A = Q*R computed by ZGEQRF_GPU.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. M >= N >= 0.
[in]nrhsINTEGER The number of columns of the matrix C. NRHS >= 0.
[in]dACOMPLEX_16 array on the GPU, dimension (LDDA,N) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,n, as returned by ZGEQRF_GPU in the first n columns of its array argument A.
[in]lddaINTEGER The leading dimension of the array A, LDDA >= M.
[in]tauCOMPLEX_16 array, dimension (N) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by MAGMA_ZGEQRF_GPU.
[in,out]dBCOMPLEX_16 array on the GPU, dimension (LDDB,NRHS) On entry, the M-by-NRHS matrix C. On exit, the N-by-NRHS solution matrix X.
[in,out]dTCOMPLEX_16 array that is the output (the 6th argument) of magma_zgeqrf_gpu of size 2*MIN(M, N)*NB + ceil(N/32)*32 )* MAX(NB, NRHS). The array starts with a block of size MIN(M,N)*NB that stores the triangular T matrices used in the QR factorization, followed by MIN(M,N)*NB block storing the diagonal block inverses for the R matrix, followed by work space of size (ceil(N/32)*32)* MAX(NB, NRHS).
[in]lddbINTEGER The leading dimension of the array dB. LDDB >= M.
[out]hwork(workspace) COMPLEX_16 array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
[in]lworkINTEGER The dimension of the array WORK, LWORK >= (M - N + NB)*(NRHS + NB) + NRHS*NB, where NB is the blocksize given by magma_get_zgeqrf_nb( M, N ).
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the HWORK array, returns this value as the first entry of the WORK array.
[out]infoINTEGER
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value