MAGMA  2.7.1
Matrix Algebra for GPU and Multicore Architectures
 All Classes Files Functions Friends Groups Pages
geqr2: QR panel factorization

Functions

magma_int_t magma_cgeqr2_batched (magma_int_t m, magma_int_t n, magmaFloatComplex **dA_array, magma_int_t Ai, magma_int_t Aj, magma_int_t ldda, magmaFloatComplex **dtau_array, magma_int_t taui, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
 CGEQR2 computes a QR factorization of a complex m by n matrix A: A = Q * R. More...
 
magma_int_t magma_dgeqr2_batched (magma_int_t m, magma_int_t n, double **dA_array, magma_int_t Ai, magma_int_t Aj, magma_int_t ldda, double **dtau_array, magma_int_t taui, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
 DGEQR2 computes a QR factorization of a real m by n matrix A: A = Q * R. More...
 
magma_int_t magma_sgeqr2_batched (magma_int_t m, magma_int_t n, float **dA_array, magma_int_t Ai, magma_int_t Aj, magma_int_t ldda, float **dtau_array, magma_int_t taui, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
 SGEQR2 computes a QR factorization of a real m by n matrix A: A = Q * R. More...
 
magma_int_t magma_zgeqr2_batched (magma_int_t m, magma_int_t n, magmaDoubleComplex **dA_array, magma_int_t Ai, magma_int_t Aj, magma_int_t ldda, magmaDoubleComplex **dtau_array, magma_int_t taui, magma_int_t *info_array, magma_int_t batchCount, magma_queue_t queue)
 ZGEQR2 computes a QR factorization of a complex m by n matrix A: A = Q * R. More...
 

Detailed Description

Function Documentation

magma_int_t magma_cgeqr2_batched ( magma_int_t  m,
magma_int_t  n,
magmaFloatComplex **  dA_array,
magma_int_t  Ai,
magma_int_t  Aj,
magma_int_t  ldda,
magmaFloatComplex **  dtau_array,
magma_int_t  taui,
magma_int_t *  info_array,
magma_int_t  batchCount,
magma_queue_t  queue 
)

CGEQR2 computes a QR factorization of a complex m by n matrix A: A = Q * R.

This version implements the right-looking QR with non-blocking.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a COMPLEX array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details).
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be divisible by 16.
[out]dtau_arrayArray of pointers, dimension (batchCount). Each is a COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

magma_int_t magma_dgeqr2_batched ( magma_int_t  m,
magma_int_t  n,
double **  dA_array,
magma_int_t  Ai,
magma_int_t  Aj,
magma_int_t  ldda,
double **  dtau_array,
magma_int_t  taui,
magma_int_t *  info_array,
magma_int_t  batchCount,
magma_queue_t  queue 
)

DGEQR2 computes a QR factorization of a real m by n matrix A: A = Q * R.

This version implements the right-looking QR with non-blocking.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details).
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be divisible by 16.
[out]dtau_arrayArray of pointers, dimension (batchCount). Each is a DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

magma_int_t magma_sgeqr2_batched ( magma_int_t  m,
magma_int_t  n,
float **  dA_array,
magma_int_t  Ai,
magma_int_t  Aj,
magma_int_t  ldda,
float **  dtau_array,
magma_int_t  taui,
magma_int_t *  info_array,
magma_int_t  batchCount,
magma_queue_t  queue 
)

SGEQR2 computes a QR factorization of a real m by n matrix A: A = Q * R.

This version implements the right-looking QR with non-blocking.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a REAL array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details).
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be divisible by 16.
[out]dtau_arrayArray of pointers, dimension (batchCount). Each is a REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).

magma_int_t magma_zgeqr2_batched ( magma_int_t  m,
magma_int_t  n,
magmaDoubleComplex **  dA_array,
magma_int_t  Ai,
magma_int_t  Aj,
magma_int_t  ldda,
magmaDoubleComplex **  dtau_array,
magma_int_t  taui,
magma_int_t *  info_array,
magma_int_t  batchCount,
magma_queue_t  queue 
)

ZGEQR2 computes a QR factorization of a complex m by n matrix A: A = Q * R.

This version implements the right-looking QR with non-blocking.

Parameters
[in]mINTEGER The number of rows of the matrix A. M >= 0.
[in]nINTEGER The number of columns of the matrix A. N >= 0.
[in,out]dA_arrayArray of pointers, dimension (batchCount). Each is a COMPLEX_16 array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details).
[in]lddaINTEGER The leading dimension of the array dA. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be divisible by 16.
[out]dtau_arrayArray of pointers, dimension (batchCount). Each is a COMPLEX_16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).
[out]info_arrayArray of INTEGERs, dimension (batchCount), for corresponding matrices.
  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed.
[in]batchCountINTEGER The number of matrices to operate on.
[in]queuemagma_queue_t Queue to execute in.

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).