Publications

Export 11 results:
Filters: Author is Nicholas J. Higham  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Anzt, H., J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Orti, Adaptive Precision in Block-Jacobi Preconditioning for Iterative Sparse Linear System Solvers,” Concurrency and Computation: Practice and Experience, vol. 31, no. 6, pp. e4460, March 2019. DOI: 10.1002/cpe.4460  (341.54 KB)
D
Dongarra, J., S. Hammarling, N. J. Higham, S. Relton, P. Valero-Lara, and M. Zounon, The Design and Performance of Batched BLAS on Modern High-Performance Computing Systems,” International Conference on Computational Science (ICCS 2017), Zürich, Switzerland, Elsevier, June 2017. DOI: DOI:10.1016/j.procs.2017.05.138  (446.14 KB)
H
Haidar, A., S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers,” The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC18), Dallas, TX, IEEE, November 2018. DOI: 10.1109/SC.2018.00050  (642.51 KB)
Dongarra, J., N. J. Higham, M. R. Dennis, P. Glendinning, P. A. Martin, F. Santosa, and J. Tanner, High-Performance Computing,” The Princeton Companion to Applied Mathematics, Princeton, New Jersey, Princeton University Press, pp. 839-842, 2015.
M
Haidar, A., H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham, Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems,” Proceedings of the Royal Society A, vol. 476, issue 2243, November 2020. DOI: 10.1098/rspa.2020.0110  (2.24 MB)
Haidar, A., H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham, Mixed-Precision Solution of Linear Systems Using Accelerator-Based Computing,” Innovative Computing Laboratory Technical Report, no. ICL-UT-20-05: University of Tennessee, May 2020.  (1.03 MB)
N
Dongarra, J., L. Grigori, and N. J. Higham, Numerical Algorithms for High-Performance Computational Science,” Philosophical Transactions of the Royal Society A, vol. 378, issue 2166, 2020. DOI: 10.1098/rsta.2019.0066  (724.37 KB)