Sparse Linear Algebra on AMD and NVIDIA GPUs—The Race is On

TitleSparse Linear Algebra on AMD and NVIDIA GPUs—The Race is On
Publication TypeConference Paper
Year of Publication2020
AuthorsTsai, Y. M., T. Cojean, and H. Anzt
Conference NameISC High Performance
Date Published2020-06
PublisherSpringer
KeywordsAMD, GPUs, nVidia, sparse matrix vector product (SpMV)
Abstract

Efficiently processing sparse matrices is a central and performance-critical part of many scientific simulation codes. Recognizing the adoption of manycore accelerators in HPC, we evaluate in this paper the performance of the currently best sparse matrix-vector product (SpMV) implementations on high-end GPUs from AMD and NVIDIA. Specifically, we optimize SpMV kernels for the CSR, COO, ELL, and HYB format taking the hardware characteristics of the latest GPU technologies into account. We compare for 2,800 test matrices the performance of our kernels against AMD’s hipSPARSE library and NVIDIA’s cuSPARSE library, and ultimately assess how the GPU technologies from AMD and NVIDIA compare in terms of SpMV performance.

DOI10.1007/978-3-030-50743-5_16
Project Tags: 
External Publication Flag: