org.netlib.lapack
Class Slar1v
java.lang.Object
org.netlib.lapack.Slar1v
public class Slar1v
- extends java.lang.Object
Following is the description from the original
Fortran source. For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* SLAR1V computes the (scaled) r-th column of the inverse of
* the sumbmatrix in rows B1 through BN of the tridiagonal matrix
* L D L^T - sigma I. The following steps accomplish this computation :
* (a) Stationary qd transform, L D L^T - sigma I = L(+) D(+) L(+)^T,
* (b) Progressive qd transform, L D L^T - sigma I = U(-) D(-) U(-)^T,
* (c) Computation of the diagonal elements of the inverse of
* L D L^T - sigma I by combining the above transforms, and choosing
* r as the index where the diagonal of the inverse is (one of the)
* largest in magnitude.
* (d) Computation of the (scaled) r-th column of the inverse using the
* twisted factorization obtained by combining the top part of the
* the stationary and the bottom part of the progressive transform.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix L D L^T.
*
* B1 (input) INTEGER
* First index of the submatrix of L D L^T.
*
* BN (input) INTEGER
* Last index of the submatrix of L D L^T.
*
* SIGMA (input) REAL
* The shift. Initially, when R = 0, SIGMA should be a good
* approximation to an eigenvalue of L D L^T.
*
* L (input) REAL array, dimension (N-1)
* The (n-1) subdiagonal elements of the unit bidiagonal matrix
* L, in elements 1 to N-1.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D.
*
* LD (input) REAL array, dimension (N-1)
* The n-1 elements L(i)*D(i).
*
* LLD (input) REAL array, dimension (N-1)
* The n-1 elements L(i)*L(i)*D(i).
*
* GERSCH (input) REAL array, dimension (2*N)
* The n Gerschgorin intervals. These are used to restrict
* the initial search for R, when R is input as 0.
*
* Z (output) REAL array, dimension (N)
* The (scaled) r-th column of the inverse. Z(R) is returned
* to be 1.
*
* ZTZ (output) REAL
* The square of the norm of Z.
*
* MINGMA (output) REAL
* The reciprocal of the largest (in magnitude) diagonal
* element of the inverse of L D L^T - sigma I.
*
* R (input/output) INTEGER
* Initially, R should be input to be 0 and is then output as
* the index where the diagonal element of the inverse is
* largest in magnitude. In later iterations, this same value
* of R should be input.
*
* ISUPPZ (output) INTEGER array, dimension (2)
* The support of the vector in Z, i.e., the vector Z is
* nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
*
* WORK (workspace) REAL array, dimension (4*N)
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
*
* =====================================================================
*
* .. Parameters ..
|
Method Summary |
static void |
slar1v(int n,
int b1,
int bn,
float sigma,
float[] d,
int _d_offset,
float[] l,
int _l_offset,
float[] ld,
int _ld_offset,
float[] lld,
int _lld_offset,
float[] gersch,
int _gersch_offset,
float[] z,
int _z_offset,
floatW ztz,
floatW mingma,
intW r,
int[] isuppz,
int _isuppz_offset,
float[] work,
int _work_offset)
|
| Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Slar1v
public Slar1v()
slar1v
public static void slar1v(int n,
int b1,
int bn,
float sigma,
float[] d,
int _d_offset,
float[] l,
int _l_offset,
float[] ld,
int _ld_offset,
float[] lld,
int _lld_offset,
float[] gersch,
int _gersch_offset,
float[] z,
int _z_offset,
floatW ztz,
floatW mingma,
intW r,
int[] isuppz,
int _isuppz_offset,
float[] work,
int _work_offset)