org.netlib.lapack
Class SSBEV

java.lang.Object
  extended by org.netlib.lapack.SSBEV

public class SSBEV
extends java.lang.Object

SSBEV is a simplified interface to the JLAPACK routine ssbev.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * SSBEV computes all the eigenvalues and, optionally, eigenvectors of * a real symmetric band matrix A. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangle of A is stored; * = 'L': Lower triangle of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * AB (input/output) REAL array, dimension (LDAB, N) * On entry, the upper or lower triangle of the symmetric band * matrix A, stored in the first KD+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * On exit, AB is overwritten by values generated during the * reduction to tridiagonal form. If UPLO = 'U', the first * superdiagonal and the diagonal of the tridiagonal matrix T * are returned in rows KD and KD+1 of AB, and if UPLO = 'L', * the diagonal and first subdiagonal of T are returned in the * first two rows of AB. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD + 1. * * W (output) REAL array, dimension (N) * If INFO = 0, the eigenvalues in ascending order. * * Z (output) REAL array, dimension (LDZ, N) * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal * eigenvectors of the matrix A, with the i-th column of Z * holding the eigenvector associated with W(i). * If JOBZ = 'N', then Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= max(1,N). * * WORK (workspace) REAL array, dimension (max(1,3*N-2)) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the algorithm failed to converge; i * off-diagonal elements of an intermediate tridiagonal * form did not converge to zero. * * ===================================================================== * * .. Parameters ..


Constructor Summary
SSBEV()
           
 
Method Summary
static void SSBEV(java.lang.String jobz, java.lang.String uplo, int n, int kd, float[][] ab, float[] w, float[][] z, float[] work, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

SSBEV

public SSBEV()
Method Detail

SSBEV

public static void SSBEV(java.lang.String jobz,
                         java.lang.String uplo,
                         int n,
                         int kd,
                         float[][] ab,
                         float[] w,
                         float[][] z,
                         float[] work,
                         intW info)