org.netlib.lapack
Class SOPMTR
java.lang.Object
org.netlib.lapack.SOPMTR
public class SOPMTR
- extends java.lang.Object
SOPMTR is a simplified interface to the JLAPACK routine sopmtr.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* SOPMTR overwrites the general real M-by-N matrix C with
*
* SIDE = 'L' SIDE = 'R'
* TRANS = 'N': Q * C C * Q
* TRANS = 'T': Q**T * C C * Q**T
*
* where Q is a real orthogonal matrix of order nq, with nq = m if
* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
* nq-1 elementary reflectors, as returned by SSPTRD using packed
* storage:
*
* if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
*
* if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* = 'L': apply Q or Q**T from the Left;
* = 'R': apply Q or Q**T from the Right.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangular packed storage used in previous
* call to SSPTRD;
* = 'L': Lower triangular packed storage used in previous
* call to SSPTRD.
*
* TRANS (input) CHARACTER*1
* = 'N': No transpose, apply Q;
* = 'T': Transpose, apply Q**T.
*
* M (input) INTEGER
* The number of rows of the matrix C. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix C. N >= 0.
*
* AP (input) REAL array, dimension
* (M*(M+1)/2) if SIDE = 'L'
* (N*(N+1)/2) if SIDE = 'R'
* The vectors which define the elementary reflectors, as
* returned by SSPTRD. AP is modified by the routine but
* restored on exit.
*
* TAU (input) REAL array, dimension (M-1) if SIDE = 'L'
* or (N-1) if SIDE = 'R'
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by SSPTRD.
*
* C (input/output) REAL array, dimension (LDC,N)
* On entry, the M-by-N matrix C.
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* WORK (workspace) REAL array, dimension
* (N) if SIDE = 'L'
* (M) if SIDE = 'R'
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
Method Summary |
static void |
SOPMTR(java.lang.String side,
java.lang.String uplo,
java.lang.String trans,
int m,
int n,
float[] ap,
float[] tau,
float[][] c,
float[] work,
intW info)
|
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
SOPMTR
public SOPMTR()
SOPMTR
public static void SOPMTR(java.lang.String side,
java.lang.String uplo,
java.lang.String trans,
int m,
int n,
float[] ap,
float[] tau,
float[][] c,
float[] work,
intW info)