org.netlib.lapack
Class SLAG2

java.lang.Object
  extended by org.netlib.lapack.SLAG2

public class SLAG2
extends java.lang.Object

SLAG2 is a simplified interface to the JLAPACK routine slag2.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines.  Using this interface also allows you
to omit offset and leading dimension arguments.  However, because
of these conversions, these routines will be slower than the low
level ones.  Following is the description from the original Fortran
source.  Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue * problem A - w B, with scaling as necessary to avoid over-/underflow. * * The scaling factor "s" results in a modified eigenvalue equation * * s A - w B * * where s is a non-negative scaling factor chosen so that w, w B, * and s A do not overflow and, if possible, do not underflow, either. * * Arguments * ========= * * A (input) REAL array, dimension (LDA, 2) * On entry, the 2 x 2 matrix A. It is assumed that its 1-norm * is less than 1/SAFMIN. Entries less than * sqrt(SAFMIN)*norm(A) are subject to being treated as zero. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= 2. * * B (input) REAL array, dimension (LDB, 2) * On entry, the 2 x 2 upper triangular matrix B. It is * assumed that the one-norm of B is less than 1/SAFMIN. The * diagonals should be at least sqrt(SAFMIN) times the largest * element of B (in absolute value); if a diagonal is smaller * than that, then +/- sqrt(SAFMIN) will be used instead of * that diagonal. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= 2. * * SAFMIN (input) REAL * The smallest positive number s.t. 1/SAFMIN does not * overflow. (This should always be SLAMCH('S') -- it is an * argument in order to avoid having to call SLAMCH frequently.) * * SCALE1 (output) REAL * A scaling factor used to avoid over-/underflow in the * eigenvalue equation which defines the first eigenvalue. If * the eigenvalues are complex, then the eigenvalues are * ( WR1 +/- WI i ) / SCALE1 (which may lie outside the * exponent range of the machine), SCALE1=SCALE2, and SCALE1 * will always be positive. If the eigenvalues are real, then * the first (real) eigenvalue is WR1 / SCALE1 , but this may * overflow or underflow, and in fact, SCALE1 may be zero or * less than the underflow threshhold if the exact eigenvalue * is sufficiently large. * * SCALE2 (output) REAL * A scaling factor used to avoid over-/underflow in the * eigenvalue equation which defines the second eigenvalue. If * the eigenvalues are complex, then SCALE2=SCALE1. If the * eigenvalues are real, then the second (real) eigenvalue is * WR2 / SCALE2 , but this may overflow or underflow, and in * fact, SCALE2 may be zero or less than the underflow * threshhold if the exact eigenvalue is sufficiently large. * * WR1 (output) REAL * If the eigenvalue is real, then WR1 is SCALE1 times the * eigenvalue closest to the (2,2) element of A B**(-1). If the * eigenvalue is complex, then WR1=WR2 is SCALE1 times the real * part of the eigenvalues. * * WR2 (output) REAL * If the eigenvalue is real, then WR2 is SCALE2 times the * other eigenvalue. If the eigenvalue is complex, then * WR1=WR2 is SCALE1 times the real part of the eigenvalues. * * WI (output) REAL * If the eigenvalue is real, then WI is zero. If the * eigenvalue is complex, then WI is SCALE1 times the imaginary * part of the eigenvalues. WI will always be non-negative. * * ===================================================================== * * .. Parameters ..


Constructor Summary
SLAG2()
           
 
Method Summary
static void SLAG2(float[][] a, float[][] b, float safmin, floatW scale1, floatW scale2, floatW wr1, floatW wr2, floatW wi)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

SLAG2

public SLAG2()
Method Detail

SLAG2

public static void SLAG2(float[][] a,
                         float[][] b,
                         float safmin,
                         floatW scale1,
                         floatW scale2,
                         floatW wr1,
                         floatW wr2,
                         floatW wi)