org.netlib.lapack
Class Dtgsyl

java.lang.Object
  extended by org.netlib.lapack.Dtgsyl

public class Dtgsyl
extends java.lang.Object

Following is the description from the original
Fortran source.  For each array argument, the Java
version will include an integer offset parameter, so
the arguments may not match the description exactly.
Contact seymour@cs.utk.edu with any questions.

* .. * * Purpose * ======= * * DTGSYL solves the generalized Sylvester equation: * * A * R - L * B = scale * C (1) * D * R - L * E = scale * F * * where R and L are unknown m-by-n matrices, (A, D), (B, E) and * (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, * respectively, with real entries. (A, D) and (B, E) must be in * generalized (real) Schur canonical form, i.e. A, B are upper quasi * triangular and D, E are upper triangular. * * The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output * scaling factor chosen to avoid overflow. * * In matrix notation (1) is equivalent to solve Zx = scale b, where * Z is defined as * * Z = [ kron(In, A) -kron(B', Im) ] (2) * [ kron(In, D) -kron(E', Im) ]. * * Here Ik is the identity matrix of size k and X' is the transpose of * X. kron(X, Y) is the Kronecker product between the matrices X and Y. * * If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b, * which is equivalent to solve for R and L in * * A' * R + D' * L = scale * C (3) * R * B' + L * E' = scale * (-F) * * This case (TRANS = 'T') is used to compute an one-norm-based estimate * of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) * and (B,E), using DLACON. * * If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate * of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the * reciprocal of the smallest singular value of Z. See [1-2] for more * information. * * This is a level 3 BLAS algorithm. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * = 'N', solve the generalized Sylvester equation (1). * = 'T', solve the 'transposed' system (3). * * IJOB (input) INTEGER * Specifies what kind of functionality to be performed. * =0: solve (1) only. * =1: The functionality of 0 and 3. * =2: The functionality of 0 and 4. * =3: Only an estimate of Dif[(A,D), (B,E)] is computed. * (look ahead strategy IJOB = 1 is used). * =4: Only an estimate of Dif[(A,D), (B,E)] is computed. * ( DGECON on sub-systems is used ). * Not referenced if TRANS = 'T'. * * M (input) INTEGER * The order of the matrices A and D, and the row dimension of * the matrices C, F, R and L. * * N (input) INTEGER * The order of the matrices B and E, and the column dimension * of the matrices C, F, R and L. * * A (input) DOUBLE PRECISION array, dimension (LDA, M) * The upper quasi triangular matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1, M). * * B (input) DOUBLE PRECISION array, dimension (LDB, N) * The upper quasi triangular matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1, N). * * C (input/output) DOUBLE PRECISION array, dimension (LDC, N) * On entry, C contains the right-hand-side of the first matrix * equation in (1) or (3). * On exit, if IJOB = 0, 1 or 2, C has been overwritten by * the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, * the solution achieved during the computation of the * Dif-estimate. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1, M). * * D (input) DOUBLE PRECISION array, dimension (LDD, M) * The upper triangular matrix D. * * LDD (input) INTEGER * The leading dimension of the array D. LDD >= max(1, M). * * E (input) DOUBLE PRECISION array, dimension (LDE, N) * The upper triangular matrix E. * * LDE (input) INTEGER * The leading dimension of the array E. LDE >= max(1, N). * * F (input/output) DOUBLE PRECISION array, dimension (LDF, N) * On entry, F contains the right-hand-side of the second matrix * equation in (1) or (3). * On exit, if IJOB = 0, 1 or 2, F has been overwritten by * the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, * the solution achieved during the computation of the * Dif-estimate. * * LDF (input) INTEGER * The leading dimension of the array F. LDF >= max(1, M). * * DIF (output) DOUBLE PRECISION * On exit DIF is the reciprocal of a lower bound of the * reciprocal of the Dif-function, i.e. DIF is an upper bound of * Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). * IF IJOB = 0 or TRANS = 'T', DIF is not touched. * * SCALE (output) DOUBLE PRECISION * On exit SCALE is the scaling factor in (1) or (3). * If 0 < SCALE < 1, C and F hold the solutions R and L, resp., * to a slightly perturbed system but the input matrices A, B, D * and E have not been changed. If SCALE = 0, C and F hold the * solutions R and L, respectively, to the homogeneous system * with C = F = 0. Normally, SCALE = 1. * * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) * If IJOB = 0, WORK is not referenced. Otherwise, * on exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK > = 1. * If IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * IWORK (workspace) INTEGER array, dimension (M+N+6) * * INFO (output) INTEGER * =0: successful exit * <0: If INFO = -i, the i-th argument had an illegal value. * >0: (A, D) and (B, E) have common or close eigenvalues. * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software * for Solving the Generalized Sylvester Equation and Estimating the * Separation between Regular Matrix Pairs, Report UMINF - 93.23, * Department of Computing Science, Umea University, S-901 87 Umea, * Sweden, December 1993, Revised April 1994, Also as LAPACK Working * Note 75. To appear in ACM Trans. on Math. Software, Vol 22, * No 1, 1996. * * [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester * Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. * Appl., 15(4):1045-1060, 1994 * * [3] B. Kagstrom and L. Westin, Generalized Schur Methods with * Condition Estimators for Solving the Generalized Sylvester * Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, * July 1989, pp 745-751. * * ===================================================================== * * .. Parameters ..


Constructor Summary
Dtgsyl()
           
 
Method Summary
static void dtgsyl(java.lang.String trans, int ijob, int m, int n, double[] a, int _a_offset, int lda, double[] b, int _b_offset, int ldb, double[] c, int _c_offset, int Ldc, double[] d, int _d_offset, int ldd, double[] e, int _e_offset, int lde, double[] f, int _f_offset, int ldf, doubleW scale, doubleW dif, double[] work, int _work_offset, int lwork, int[] iwork, int _iwork_offset, intW info)
           
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Dtgsyl

public Dtgsyl()
Method Detail

dtgsyl

public static void dtgsyl(java.lang.String trans,
                          int ijob,
                          int m,
                          int n,
                          double[] a,
                          int _a_offset,
                          int lda,
                          double[] b,
                          int _b_offset,
                          int ldb,
                          double[] c,
                          int _c_offset,
                          int Ldc,
                          double[] d,
                          int _d_offset,
                          int ldd,
                          double[] e,
                          int _e_offset,
                          int lde,
                          double[] f,
                          int _f_offset,
                          int ldf,
                          doubleW scale,
                          doubleW dif,
                          double[] work,
                          int _work_offset,
                          int lwork,
                          int[] iwork,
                          int _iwork_offset,
                          intW info)