org.netlib.lapack
Class DORML2
java.lang.Object
org.netlib.lapack.DORML2
public class DORML2
- extends java.lang.Object
DORML2 is a simplified interface to the JLAPACK routine dorml2.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* DORML2 overwrites the general real m by n matrix C with
*
* Q * C if SIDE = 'L' and TRANS = 'N', or
*
* Q'* C if SIDE = 'L' and TRANS = 'T', or
*
* C * Q if SIDE = 'R' and TRANS = 'N', or
*
* C * Q' if SIDE = 'R' and TRANS = 'T',
*
* where Q is a real orthogonal matrix defined as the product of k
* elementary reflectors
*
* Q = H(k) . . . H(2) H(1)
*
* as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
* if SIDE = 'R'.
*
* Arguments
* =========
*
* SIDE (input) CHARACTER*1
* = 'L': apply Q or Q' from the Left
* = 'R': apply Q or Q' from the Right
*
* TRANS (input) CHARACTER*1
* = 'N': apply Q (No transpose)
* = 'T': apply Q' (Transpose)
*
* M (input) INTEGER
* The number of rows of the matrix C. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix C. N >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines
* the matrix Q.
* If SIDE = 'L', M >= K >= 0;
* if SIDE = 'R', N >= K >= 0.
*
* A (input) DOUBLE PRECISION array, dimension
* (LDA,M) if SIDE = 'L',
* (LDA,N) if SIDE = 'R'
* The i-th row must contain the vector which defines the
* elementary reflector H(i), for i = 1,2,...,k, as returned by
* DGELQF in the first k rows of its array argument A.
* A is modified by the routine but restored on exit.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,K).
*
* TAU (input) DOUBLE PRECISION array, dimension (K)
* TAU(i) must contain the scalar factor of the elementary
* reflector H(i), as returned by DGELQF.
*
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
* On entry, the m by n matrix C.
* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* WORK (workspace) DOUBLE PRECISION array, dimension
* (N) if SIDE = 'L',
* (M) if SIDE = 'R'
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
Method Summary |
static void |
DORML2(java.lang.String side,
java.lang.String trans,
int m,
int n,
int k,
double[][] a,
double[] tau,
double[][] c,
double[] work,
intW info)
|
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
DORML2
public DORML2()
DORML2
public static void DORML2(java.lang.String side,
java.lang.String trans,
int m,
int n,
int k,
double[][] a,
double[] tau,
double[][] c,
double[] work,
intW info)