org.netlib.lapack
Class DLARRE
java.lang.Object
org.netlib.lapack.DLARRE
public class DLARRE
- extends java.lang.Object
DLARRE is a simplified interface to the JLAPACK routine dlarre.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* Given the tridiagonal matrix T, DLARRE sets "small" off-diagonal
* elements to zero, and for each unreduced block T_i, it finds
* (i) the numbers sigma_i
* (ii) the base T_i - sigma_i I = L_i D_i L_i^T representations and
* (iii) eigenvalues of each L_i D_i L_i^T.
* The representations and eigenvalues found are then used by
* DSTEGR to compute the eigenvectors of a symmetric tridiagonal
* matrix. Currently, the base representations are limited to being
* positive or negative definite, and the eigenvalues of the definite
* matrices are found by the dqds algorithm (subroutine DLASQ2). As
* an added benefit, DLARRE also outputs the n Gerschgorin
* intervals for each L_i D_i L_i^T.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the n diagonal elements of the tridiagonal
* matrix T.
* On exit, the n diagonal elements of the diagonal
* matrices D_i.
*
* E (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the (n-1) subdiagonal elements of the tridiagonal
* matrix T; E(N) need not be set.
* On exit, the subdiagonal elements of the unit bidiagonal
* matrices L_i.
*
* TOL (input) DOUBLE PRECISION
* The threshold for splitting. If on input |E(i)| < TOL, then
* the matrix T is split into smaller blocks.
*
* NSPLIT (input) INTEGER
* The number of blocks T splits into. 1 <= NSPLIT <= N.
*
* ISPLIT (output) INTEGER array, dimension (2*N)
* The splitting points, at which T breaks up into submatrices.
* The first submatrix consists of rows/columns 1 to ISPLIT(1),
* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
* etc., and the NSPLIT-th consists of rows/columns
* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
*
* M (output) INTEGER
* The total number of eigenvalues (of all the L_i D_i L_i^T)
* found.
*
* W (output) DOUBLE PRECISION array, dimension (N)
* The first M elements contain the eigenvalues. The
* eigenvalues of each of the blocks, L_i D_i L_i^T, are
* sorted in ascending order.
*
* WOFF (output) DOUBLE PRECISION array, dimension (N)
* The NSPLIT base points sigma_i.
*
* GERSCH (output) DOUBLE PRECISION array, dimension (2*N)
* The n Gerschgorin intervals.
*
* WORK (input) DOUBLE PRECISION array, dimension (4*N???)
* Workspace.
*
* INFO (output) INTEGER
* Output error code from DLASQ2
*
* Further Details
* ===============
*
* Based on contributions by
* Inderjit Dhillon, IBM Almaden, USA
* Osni Marques, LBNL/NERSC, USA
*
* =====================================================================
*
* .. Parameters ..
Method Summary |
static void |
DLARRE(int n,
double[] d,
double[] e,
double tol,
intW nsplit,
int[] isplit,
intW m,
double[] w,
double[] woff,
double[] gersch,
double[] work,
intW info)
|
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
DLARRE
public DLARRE()
DLARRE
public static void DLARRE(int n,
double[] d,
double[] e,
double tol,
intW nsplit,
int[] isplit,
intW m,
double[] w,
double[] woff,
double[] gersch,
double[] work,
intW info)