org.netlib.lapack
Class DLANSP
java.lang.Object
org.netlib.lapack.DLANSP
public class DLANSP
- extends java.lang.Object
DLANSP is a simplified interface to the JLAPACK routine dlansp.
This interface converts Java-style 2D row-major arrays into
the 1D column-major linearized arrays expected by the lower
level JLAPACK routines. Using this interface also allows you
to omit offset and leading dimension arguments. However, because
of these conversions, these routines will be slower than the low
level ones. Following is the description from the original Fortran
source. Contact seymour@cs.utk.edu with any questions.
* ..
*
* Purpose
* =======
*
* DLANSP returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of a
* real symmetric matrix A, supplied in packed form.
*
* Description
* ===========
*
* DLANSP returns the value
*
* DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies the value to be returned in DLANSP as described
* above.
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is supplied.
* = 'U': Upper triangular part of A is supplied
* = 'L': Lower triangular part of A is supplied
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, DLANSP is
* set to zero.
*
* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The upper or lower triangle of the symmetric matrix A, packed
* columnwise in a linear array. The j-th column of A is stored
* in the array AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
* WORK is not referenced.
*
* =====================================================================
*
* .. Parameters ..
Method Summary |
static double |
DLANSP(java.lang.String norm,
java.lang.String uplo,
int n,
double[] ap,
double[] work)
|
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
DLANSP
public DLANSP()
DLANSP
public static double DLANSP(java.lang.String norm,
java.lang.String uplo,
int n,
double[] ap,
double[] work)