
1/16

COSC 462

Parallel Algorithms

The Design Basics

Piotr Luszczek

September 9, 2016

2/16

Levels of Abstraction

Memory coherency, transactions

Atomics

Mutex, Semaphores, ...

Algorithms: partitioning, communication,
agglomeration, mapping

Messages, reductions

vmovnrngoaps, clevict1

compare_and_swap()

lock()/unlock(), V()/P()

MPI_Reduce(), #omp reduce:+

Domain, channel, task, locality,
utilization

Concepts Tools

3/16

Example: Largest Value (sequential)

● for (int i=0; i<N; ++i) X[i] = rand()

int largest = X[0]

for (int i=1; i<N; ++i)

 if (largest < X[i])
 largest = X[i]

printf(“%d\n”, largest);

● Complexity:

– O(N) (memory accesses, comparisons)

4/16

Example: Largest Value (threaded)

● for (int i = 0; i < N; ++i) thread_create(thread_max, &X[i])

void thread_max(int *X) {

 lock()
 if (largest < X[0])
 largest = X[0]
 unlock()
}

● Complexity

– O(1)*T comparisons

– O(N) (memory accesses, locks)
● Amdahl fraction (sequential part)

– 100%!!!
● Scaling (Gustafson)

– Does not scale

5/16

Example: Largest Value (OpenMP)

● #pragma omp parallel for reduction(max:largest)

for (int i=0; i<N; ++i)

 if (largest < X[i])
 largest = X[i]

● Complexity

– O(N)/T (comparisons)

– O(N) (memory accesses)
● Amdahl fraction

– s → 0% as N → ∞

– Beware of hidden cost of reduction
● Scaling (Gustafson)

– Good
● As long as reduction scales

6/16

Example: Largest Value (MPI)

● MPI_Reduce(X, N / P, MPI_MAX)

● P = MPI::Comm::World.size

● Complexity

– O(N) messages (no matter the implementation)

– O(N) comparisons

– O(N/P + log P) global time steps
● Amdahl fraction

– s → log P if P >> N
● Scaling (Gustafson)

– Good
● As long as MPI_Reduce() scales

7/16

Design Methodology for Parallel Algorithms

● Proposed by Ian Foster

– In book: “Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering”

– Publisher: Addison-Wesley, Reading, MA, 1995

– Details repeated in course textbook by Micheal J. Quinn
● Principle:

– Focus on the problem
● Use the language of the problem, not the machine

– Delay machine-dependent details and issues
● Design steps

– Partitioning

– Communication

– Agglomeration

– Mapping

8/16

Partitioning

● Divide computation into “small” pieces

● Approaches

– Data-centric

– Computation-centric
● Decompositions

– Domain decomposition

– Functional decomposition
● Result

– (primitive) Tasks

– Data items

1D

1D

3D

1D

Acquire

Register Determine

Track

Display

9/16

Partitioning: Guidelines

● Have an order of magnitude more tasks than processors

– Required to enough parallelism and further adjustments
● Redundant computation/storage is minimized

– Important for scaling problem size
● Primitive tasks are roughly the same size

– Important for load balancing
● Number of tasks is a function of problem size

– Important for scaling the hardware with problem size
● Optimizations to keep in mind

– Partitions (dimensionality, size) correspond (roughly) to hardware

10/16

Communication

● Communication is only necessary because of parallelism

– It doesn’t exist in sequential algorithms
● Determine communication patterns

– Local (Small group of processes communicate)

– Global (Most of the the processes communicate)
● Tasks communicate through channels

– Visualize your channels to see how many you need

– Estimate the amount of communication in the channels
● Ideally:

– Communication is balanced

– Communication occurs between small number of tasks

– Communication is performed in parallel

– Computation is performed in parallel
● Good: {compute() ; send()} || {compute();receive()}
● Bad: {compute(); send()} || {receive(); compute()}

11/16

Agglomeration

● Primitive tasks are grouped (agglomerated) to achieve:

– Better performance
● Lower communication overhead (bandwidth)
● Smaller number of messages (latency due to message startup)

– Simpler code
● Guiding principle: maintain (or increase) locality

– Locality minimizes or eliminates communication
● Example agglomeration targets

– Data dimensions
● Merge dimension(s) for example use 1D instead of 2D

– Channels with excessive communication

12/16

Agglomeration Guidelines

● Increase locality as much as possible

● Replicated computation must be shorter than communication it
replaced

● The partitioning must still scales

– Tasks and their data are still small enough
● Agglomerated tasks are similar (for load balancing) in terms of:

– Computation

– Communication
● Number of agglomerated tasks is a function of the global

problem size:

– Tasks = f(size)
● Number of agglomerated tasks is small but as large as number

of processors:

– Tasks > Processors
● The existing sequential code can be used for agglomerated

tasks (with minimal modifications)

13/16

Mapping

● Mapping assigns tasks to processors

– This should optimize for the the hardware
● Increase processor utilization

– Processors should run in parallel

– Processors should compute for (roughly) the same amount of time
between communication exchanges

● Decrease communication

– If a channel is mapped to the same processor, the communication
through that channel may be removed

– Make communication local
● Channels should connect close groups of processors

● Often, finding optimal mapping is NP-hard

– Many mapping problems can be reduced to graph coloring

14/16

Mapping: Decision Tree

● The number of tasks is static

– The communication pattern structured
● Roughly constant computation time per task

– Agglomerate to minimize communication
– One task per processor

● Computation time per task varies by region
– Cyclically map tasks to processors to balance communication load

– The communication pattern is unstructured
● Use static load balancing

● The number of tasks is dynamic

– Frequent communication between tasks
● Use dynamic load balancing

– Many short-lived tasks and no intertask communication
● Use a runtime task-scheduling

processors

tasks

Cyclic distribution

15/16

Mapping: Checklist

● Consider both designs:

– One task per processor

– Multiple tasks per processor
● Consider both task-processor allocations:

– Static

– Dynamic
● For dynamic task-processor allocation:

– Ensure task allocation/management is not a bottleneck
● For static task-processor allocation:

– Have an order of magnitude more tasks than processors

16/16

Back to “Largest Value” Example

PartitioningPartitioning

Communication
channels

Mapping

Agglomeration

Communication
channels

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

