COSC 462

Parallel Algorithms

The Design Basics

Piotr Luszczek

September 9, 2016 1/16

Levels of Abstraction

Concepts

Algorithms: partitioning, communication,
agglomeration, mapping

Tools

Domain, channel, task, locality,
utilization

Messages, reductions

MPI_Reduce(), #omp reduce:+

Mutex, Semaphores, ...

lock()/unlock(), V()/P()

Atomics

compare_and_swap()

Memory coherency, transactions

vmovnrngoaps, clevicti

2/16

Example: Largest Value (sequential)

o for (int i=0; i<N; ++1) X[i] = rand()
int largest = X[0]

for (inti=1; i<N; ++i)

if (largest < X]|i
Izglrggst = X[i] D

printf(“%d\n”, largest);
o Complexity:
- O(N) (memory accesses, comparisons)

3/16

Example: Largest Value (threaded)

for (inti =0;i < N; ++i) thread_create(thread_max, &X|i])
void thread_max(int *X) {

lock()

if (largest < X[0])

largest = X
unlogck() |

Complexity

- O(1)*T comparisons

- O(N) (memory accesses, locks)
Amdahl fraction (sequential part)
- 100%!!!

Scaling (Gustafson)

- Does not scale

4/16

Example: Largest Value (OpenMP)

#pragma omp parallel for reduction(max:largest)
for (int i=0; i<N; ++i)
et s
Complexity
- O(N)/T (comparisons)
- O(N) (memory accesses)
Amdahl fraction
- s> 0%asN —
- Beware of hidden cost of reduction
Scaling (Gustafson)

- (Good
« As long as reduction scales

5/16

Example: Largest Value (MPI)

MPI_Reduce(X, N / P, MPI_MAX)

P = MPI::Comm::World.size

Complexity

- O(N) messages (no matter the implementation)
- O(N) comparisons

- O(N/P + log P) global time steps

Amdahl fraction

- s~ logPifP>>N

Scaling (Gustafson)

- Good
« Aslong as MPI_Reduce() scales

6/16

Design Methodology for Parallel Algorithms

« Proposed by lan Foster

- In book: “Desicr:;ning and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering”

- Publisher: Addison-Wesley, Reading, MA, 1995

— Details repeated in course textbook by Micheal J. Quinn
e Principle:

- Focus on the problem

« Use the language of the problem, not the machine
- Delay machine-dependent details and issues

e Design steps
- Partitioning
- Communication
- Agglomeration

- Mapping

7/16

Partitioning

Divide computation into “small” pieces
Approaches

- Data-centric

- Computation-centric
Decompositions

- Domain decomposition é ? ; i
- Functional decomposition \» =
Result

— (primitive) Tasks
\ - Data items

Register} Determine % 3D

Display 1D

8/16

Partitioning: Guidelines

Have an order of magnitude more tasks than processors
- Required to enough parallelism and further adjustments
Redundant computation/storage is minimized

- Important for scaling problem size

Primitive tasks are roughly the same size

- Important for load balancing

Number of tasks is a function of problem size

- Important for scaling the hardware with problem size
Optimizations to keep in mind

- Partitions (dimensionality, size) correspond (roughly) to hardware

9/16

Communication

Communication is only necessary because of parallelism

It doesn't exist in sequential algorithms

Determine communication patterns

Local (Small group of processes communicate)
Global (Most of the the processes communicate)

Tasks communicate through channels
— Visualize your channels to see how many you need

Estimate the amount of communication in the channels

Ideally:

Communication is balanced

Communication occurs between small number of tasks
Communication is performed in parallel

Computation is performed in parallel

« Good: {compute() ; send()} || {compute();receive()}
« Bad: {compute(); send()} || {receive(); compute()}

10/16

Agglomeration

« Primitive tasks are grouped (agglomerated) to achieve:

- Better performance

« Lower communication overhead (bandwidth)
« Smaller number of messages (latency due to message startup)
- Simpler code

« Guiding principle: maintain (or increase) locality
- Locality minimizes or eliminates communication
« Example agglomeration targets

- Data dimensions
« Merge dimension(s) for example use 1D instead of 2D
- Channels with excessive communication

11/16

Agglomeration Guidelines

Increase locality as much as possible

Replicated computation must be shorter than communication it
replacead

The partitioning must still scales

- Tasks and their data are still small enough
Agglomerated tasks are similar (for load balancing) in terms of:

- Computation
- Communication

Number of agglomerated tasks is a function of the global
problem size:

— Tasks = f(size)

Number of agglomerated tasks is small but as large as number
Of Processors:

— Tasks > Processors

The existing sequential code can be used for agglomerated
tasks (with minimal modifications)

12/16

Mapping

Mapping assigns tasks to processors

— This should optimize for the the hardware
Increase processor utilization

- Processors should run in parallel

- Processors should compute for (roughly) the same amount of time

between communication exchanges
Decrease communication

- If a channel is mapped to the same processor, the communication

through that channel may be removed
- Make communication local
« Channels should connect close groups of processors
Often, finding optimal mapping is NP-hard
- Many mapping problems can be reduced to graph coloring

13/16

Mapping: Decision Tree

« The number of tasks is static
- The communication pattern structured

'Cyclic distribution

« Roughly constant computation time per task
- Agglomerate to minimize communication
— One task per processor

« Computation time per task varies by region

(T tasks

i . processors

- Cyclically map tasks to processors to balance Commumcatlon load

- The communication pattern is unstructured
« Use static load balancing
e The number of tasks is dynamic
- Frequent communication between tasks
« Use dynamic load balancing

- Many short-lived tasks and no intertask communication

« Use a runtime task-scheduling

14/16

Mapping: Checklist

Consider both designs:

- One task per processor

- Multiple tasks per processor

Consider both task-processor allocations:

- Static

- Dynamic

For dynamic task-processor allocation:

- Ensure task allocation/management is not a bottleneck
For static task-processor allocation:

- Have an order of magnitude more tasks than processors

15/16

Back to “"Largest Value™ Example

(L e e e e e P e el

r/ y/ # # ¥ ; Partitioning

DDDDBDDDBDDDDBDDDDDDDDDDDDDDDD@

Y YYYTYTYYYYYY Y v vy ey chames

Agglomeration
(L] (LTI (L] (L]

o
aesae

Communication
channels R

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

