
Message Passing Interface

George Bosilca
bosilca@icl.utk.edu

Message Passing Interface
Standard

• http://www.mpi-forum.org
• Current version: 3.1
• All parallelism is explicit: the

programmer is responsible for
correctly identifying parallelism and
implementing parallel algorithms
using MPI constructs

network

Memory Process Memory Process

Memory Process Memory Process

For more info: Books on MPI
New Tutorial Books on MPI

Advanced'MPI,'SC15'(11/16/2015)' 11&

Basic%MPI% Advanced%MPI,%including%MPIU3%

New Tutorial Books on MPI

Advanced'MPI,'SC15'(11/16/2015)' 11&

Basic%MPI% Advanced%MPI,%including%MPIU3%

Even more info

• MPI standard :
http://www.mpi-forum.org/docs/docs.html

• MPI Forum : http://www.mpi-forum.org/
• Implementations: Open MPI, MPICH,

MVAPICH, Intel MPI, Microsoft MPI, and
others

Why MPI is important ?
• Standardization - MPI is the only message passing library which can

be considered a standard. It is supported on virtually all HPC
platforms. Practically, it has replaced all previous message passing
libraries

• Portability - There is no need to modify your source code when you
port your application to a different platform that supports (and is
compliant with) the MPI standard

• Performance Opportunities - Vendor implementations should be
able to exploit native hardware features to optimize performance

• Functionality – Rich set of features
• Availability - A variety of implementations are available, both vendor

and public domain

Before you start

• Compiling and linking MPI application is as
simple as calling mpicc, mpicxx and
mpifort
– Your MPI library must be configured with

options similar to your applications (-i8)
• Executing MPI application is slightly more

complicated
– mpiexec –np 8 my_awesome_app
– For more advanced usages carefully read the

”mpiexec –help” and/or the online resources

MPI Initialization/Finalization

Setting up your world
• MPI can be used between MPI_Init and

MPI_Finalize
– Predefined communication contexts exists after

MPI_Init
• MPI_COMM_WORLD: all processes created by the same

mpiexec command
• MPI_COMM_SELF: you are the only participant

– These predefined objects lose their validity after
MPI_Finalize (as everything else related to MPI)

int MPI_Init(int *argc, char ***argv)
int MPI_Finalize(void)
int MPI_Initialized(int* flag)
int MPI_Finalized(int* flag)

Threading support

• Request a certain level of thread support
– There is a certain cost involved

int MPI_Init_thread(int *argc, char ***argv,
int required, int* provided)

MPI_THREAD_SINGLE Only the thread executes in the context of the
process (the process should not be multi-threaded)

MPI_THREAD_FUNNELED Only the thread that called MPI_Init_thread can
make MPI calls (the process can be multi-threaded)

MPI_THREAD_SERIALIZED Only one thread at the time will make MPI calls (the
process can be multi-threaded)

MPI_THREAD_MULTIPLE All threads are allowed to make MPI calls
simultaneously (the process can be multi-threaded)

Hello World !
int main(int argc, char** argv) {

int world_size, world_rank, name_len;
char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Get_processor_name(processor_name, &name_len);

printf("Hello world from %s, rank %d/%d\n",
processor_name, world_rank, world_size);

MPI_Finalize();
}

MPI Point-to-point
communications

Send & Receive
• Explicit communications (FIFO per peer per communicator)
• Move data from one process to another (possibly local)

process
– The data is described by a data-type, a count and a

memory location
– The destination process by a rank in a communicator
– The matching is tag based

int MPI_Send(void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status* status)

Blocking Communications
• The process is blocked in the MPI function until:

– For receives the remote data has been safely copied
into the receive buffer

– For sends the send buffer can be safely modified by
the user without impacting the message transfer

int MPI_Send(void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status* status)

Communication modes
• a send in Standard mode can be started whether or not a matching

receive has been posted. It may complete before a matching receive
is posted.

– successful completion of the send operation may depend on the occurrence of a
matching receive

• Buffered mode send operation can be started whether or not a
matching receive has been posted. It may complete before a
matching receive is posted.

– its completion does not depend on the occurrence of a matching receive

• send that uses the Synchronous mode can be started whether or
not a matching receive was posted. It will complete successfully only
if a matching receive is posted, and the receive operation has
started to receive the message

– Its completion does not only indicates that the send buffer can be reused, but it
also indicates that the receiver started executing the matching receive

Communication modes
• send that uses the Ready communication mode may be started only

if the matching receive is already posted. Otherwise, the operation is
erroneous and its outcome is undefined.

– completion of the send operation does not depend on the status of a matching
receive, and merely indicates that the send buffer can be reused

Buffered Synchronous Ready

Send MPI_Bsend MPI_Ssend MPI_Rsend

Semantics of Point-to-Point
Communication

• Order: Messages are non-overtaking
• Progress: No progression guarantees

except when in MPI calls
• Fairness: no guarantee of fairness.

However, usually a best effort approach
implemented in the MPI libraries.

• Resource limitations: Best effort
Quality implementation: a particular implementation of he

standard, exhibiting a set of desired properties.

Don’t do !

MPI_Send(buf, count, datatype, peer, tag, comm)
MPI_Recv(buf, count, datatype, peer, tag, comm, &status)

MPI_Send
MPI_Recv

MPI_Send
MPI_Recv

P0 P1

Non-Blocking Communications
• The process returns from the call as soon as

possible, before any data transfer has been
initiated.

• All flavors of communication modes supported.
• Subsequent MPI call required to check the

completion status.
int MPI_Isend(void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Request *request)

Communication Completion

• Single completion
– completion of a send operation indicates that

the sender is now free to update the locations
in the send buffer

– completion of a receive operation indicates
that the receive buffer contains the received
message

int MPI_Wait(MPI_Request *request, MPI_Status *status)
int MPI_Test(MPI_Request *request,

int *flag, MPI_Status *status)

Communication Completion

• Multiple Completions (ANY)
– A call to MPI_WAITANY or MPI_TESTANY

can be used to wait for the completion of one
out of several operations.

int MPI_Waitany(int count, MPI_Request *array_of_requests,
int *index, MPI_Status *status)

int MPI_Testany(int count, MPI_Request *array_of_requests,
int *index, int *flag, MPI_Status *status)

Communication Completion

• Multiple Completions (SOME)
– A call to MPI_WAITSOME or

MPI_TESTSOME can be used to wait for the
completion of at least one out of several
operations.

int MPI_Waitsome(int incount, MPI_Request *array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

int MPI_Testsome(int incount, MPI_Request *array_of_requests,
int *outcount, int *array_of_indices,
MPI_Status *array_of_statuses)

Communication Completion

• Multiple Completions (ALL)
– A call to MPI_WAITALL or MPI_TESTALL can

be used to wait for the completion of all
operations.

int MPI_Waitall(int count, MPI_Request *array_of_requests,
MPI_Status *array_of_statuses)

int MPI_Testall(int count, MPI_Request *array_of_requests,
int *flag, MPI_Status *array_of_statuses)

Persistent Communications
• A communication with the same argument list

repeatedly executed within the inner loop of a
parallel computation
– Allow MPI implementations to optimize the data transfers

• All communication modes (buffered, synchronous and
ready) can be applied

int MPI_[B,S, R,]Send_init(void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Request *request)

int MPI_Start(MPI_Request *request)
int MPI_Startall(int count, MPI_Request *array_of_requests)

