
  

 

Chapter 2

Memory Hierarchy Design
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Introduction
● Goal: unlimited amount of memory with low latency
● Fast memory technology is more expensive per bit than 

slower memory
– Use principle of locality (spatial and temporal)

● Solution:  organize memory system into a hierarchy
– Entire addressable memory space available in largest, slowest 

memory
– Incrementally smaller and faster memories, each containing a 

subset of the memory below it, proceed in steps up toward the 
processor

● Temporal and spatial locality insures that nearly all 
references can be found in smaller memories
– Gives the illusion of a large, fast memory being presented to 

the processor
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CPU vs. Memory: Performance vs Latency
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Memory Hierarchy Design Considerations

● Memory hierarchy design becomes more crucial with recent 
multi-core processors:
– Aggregate peak bandwidth grows with # cores:

● Intel Core i7 can generate two references per core per clock
● Four cores and 3.2 GHz clock

– 25.6 billion 64-bit data references/second +
– 12.8 billion 128-bit instruction references
– = 409.6 GB/s!

● DRAM bandwidth is only 6% of this (25 GB/s)
● Requires:

– Multi-port, pipelined caches
– Two levels of cache per core
– Shared third-level cache on chip
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Performance and Power for Caches

● High-end microprocessors have >10 MB on-chip cache
– Consumes large amount of area and power budget
– Both static (idle) and dynamic power is an issue

● Personal/mobile devices have
– 20-50x smaller power budget
– 25%-50% is consumed by memory
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Handling of Cache Misses

● When a word is not found in the cache, a miss occurs:
– Fetch word from lower level in hierarchy, requiring a higher 

latency reference
– Lower level may be another cache or the main memory
– Also fetch the other words contained within the block

● Takes advantage of spatial locality
– Place block into cache in any location within its set, 

determined by address
● block address MODULO number of sets
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Cache Associativity and Writing Strategies

● n sets → n-way set associative
– Direct-mapped cache → one block per set
– Fully associative → one set

● Writing to cache:  two strategies
– Write-through

● Immediately update lower levels of hierarchy
– Write-back

● Only update lower levels of hierarchy when an updated block is 
replaced

– Both strategies use write buffer to make writes asynchronous

9

Miss Rate and Types of Cache Misses

● Miss rate is...
– Fraction of cache access that result in a miss

● Reasons for cache misses and their names
– Compulsory

● Cache block is referenced for the first time
– Solution: hardware and software prefetchers

– Capacity
● Cache block was discarded and later retrieved

– Solution: build bigger cache or reorganize the code
– Conflict

● Program makes repeated references to multiple addresses from 
different blocks that map to the same location in the cache

– Solution: add padding or stride to code; change size of data
– Coherency
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Calculating Miss Rate

● Note that speculative and multithreaded processors may 
execute other instructions during a miss
– This reduces performance impact of misses
– But complicates analysis and introduces runtime dependence

Misses
Instruction

= Miss rate×Memory accesses
Instruction count

= Miss rate×Memory accesses
Instruction

Average memory access time = Hit time+Miss rate×Miss penalty
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Cache and TLB Mapping Illustrated
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Cache Design Considerations

● Larger block size
– Reduced compulsory misses
– Slightly reduced static power 

(smaller tag)
– Sometimes increased capacity 

and conflict misses
● Bigger cache

– Reduced miss rate
– Increased hit time
– Increased static & dynamic 

power
● Higher associativity

– Reduced conflict miss rate
– Increased hit time
– Increased power

● More levels of cache
– Reduced miss penalty

● Prioritize read misses over 
write misses
– Reduced miss penalty
– Need for write buffer and 

hazard resolution
● Avoid address translation 

during indexing of cache
– Reduced hit time
– Limited size and structure 

of cache

Access time = Hit timeL1 +Miss rateL1

×(Hit timeL2+Miss rateL2×Miss penaltyL2)
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 Categories of Metrics for Cache Optimization
● Reduce hit time

– Small and simple first-level 
caches

– “way-prediction”
– Side effect: reduction in 

power consumption
● Increase cache bandwidth

– Pipelined caches
– Multibanked caches
– Nonblocking caches

● Reduce miss penalty
– “Critical word first”
– Merging write buffers

● Reduce miss rate
– Compiler optimization
– Side effect: reduced power

● Reduce miss penalty and/or 
rate via parallelism
– Hardware prefetching
– Software and compiler 

prefetching
– Side effect: increased 

power due to unused data
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Optimization 1: Small/Simple 1st-level Caches

● 1st level cache should match the clock cycle of CPU
● Cache addressing is a three step process

– Address tag memory with index portion of address
– Compare the found tag with address tag
– Choose cache set

● High associativity helps with...
– Address aliasing
– Dealing with TLB and multiprocessing conflicts

● Low associativity...
– Is faster

● Overlap tag check with data transmission
● 10% or more for each doubling of set count

– Consumes less power
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Optimization 2: “way prediction”
● Idea: predict “the way”

– which block within set will be accessed next
● Index multiplexor (mux) starts working early
● Implemented as extra bits kept in cache for each block
● Prediction accuracy (simulated)

– more effective of instruction caches
– > 90% for two-way associative
– > 80% for four-way associative

● On misprediction
– Try the other block
– Change the prediction bits
– Incur penalty (commonly 1 cycle for slow CPUs)

● Examples: 1st use MIPS R10000 in 1990s, ARM Cortex-A8
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Optimization 3: Pipelined Cache Access

● Improves bandwidth
● History

– Pentium (1993) 1 cycle
– Pentium Pro (1995) 2 cycles
– Pentium III (1999) 2 cycles
– Pentium 4 (2000) 4 cycles
– Intel Core i7 (2010) 4 cycles

● Interaction with branch prediction
– Increased penalty for mispredicted branches

● Load instructions are longer
– Waiting for cache pipeline to finish

● Pipeline cache cycles make high degrees of associativity 
easier to implement
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Optimization 4: Nonblocking Caches
● If one instruction stalls on a cache miss, should the following 

instruction stall if its data is in cache?
– NO

● But you have design a nonblocking cache (lockup-free cache)
– Call it “hit under miss”

● Why stop at two instructions?
– Make it “hit under multiple miss”

● What about two outstanding misses?
– “miss under miss”
– Next level cache has to be able to handle multiple misses

● Rarely the case in contemporary CPUs
● How long before our caches become

– Out-of-order, superscalar, …
– Moving the CPU innovation into the memory hierarchy?
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Optimization 5: Multibanked Caches
● Main memory has been organized in banks for increased 

bandwidth
● Caches can do this too
● Each cache block is evenly spread across banks

– Sequential interleaving
● Bank 0: blk[0] Bank 1: blk[1] Bank 2: blk[2] Bank 3: blk[3]
● Bank 0: blk[4] Bank 1: blk[5] Bank 2: blk[6] Bank 3: blk[7]

● Modern use
– ARM Cortex-A8

● 1-4 banks in L2 cache
– Intel Core i7

● 4 banks in L1 (2 memory accesses/cycle)
● 8 banks in L2

● Reduced power usage
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Optimization 6: Critical Word 1st ,Early Restart
● Forget cache blocks (lines) deal with words

– Start executing instruction when its word arrives, not the entire 
block where the word resides

● Critical word first
– What if the instruction needs the last word in the cache block?

● Go ahead and request the last word from memory before 
requesting others

– Out-of-order loading of cache block words
● As soon as the word arrives pass it on to the CPU
● Continue fetching the remaining words

● Early restart
– Don't change the order of words, but supply the missing word 

as soon as it arrives
● it won't help if the last word in block is needed

● Useful for large cache blocks, depends on data-stream

20

Optimization 7: Merging Write Buffer (Intro)

● Write buffer basics
– Write buffer sits between cache and memory
– Write buffer stores both: data and its address
– Write buffer allows for the store instruction to finish 

immediately
● Unless the write buffer is full

– Especially useful for write-through caches
● Write-back caches will benefit for when block is replaced
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Optimization 7: Merging Write Buffer

● Merging write buffer: a buffer that merges write requests
● When storing to a block that is already pending in the write 

buffer, only update the write buffer
● Another way to look at it: the write buffer with merging is 

equivalent to a larger buffer but without merging
● Merging buffer reduces stalls due to the buffer being full
● Should not be used for I/O addresses (special memory 

locations)
Addr valid Data valid valid valid

100 1 M[100] 0 0 0
108 1 M[108] 0 0 0

116 1 M[116] 0 0 0

124 1 M[124] 0 0 0

Addr valid Data valid valid valid

100 1 M[100] 1 M[108] 1 M[116] 1 M[124]

af
te

r m
er

ge
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Optimization 8: Compiler Optimizations

● No hardware changes required
● Two main techniques

– Loop interchange
● Requires 2 or more loop nests
● The order of loops is changed to walk through memory in a 

more cache-friendly manner
– Loop blocking

● Additional loop nests are introduced to deal with small portion of 
an array (called a block but also a tile)
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Optimization 8: Loop Interchange

/* Before: memory stride = 100 */

for (j = 0; j < 100; ++j)
  for (i = 0; i < 5000; ++i)
    x[i][j] = 2 * x[i][j];

/* After: memory stride = 1
 * Uses all words in a single cache block */

for (i = 0; i < 5000; ++i)
  for (j = 0; j < 100; ++j)
    x[i][j] = 2 * x[i][j];
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Optimization 8: Blocking
/* Before: memory stride: A → 1, B → N */
for (i = 0; i < N; ++i)
  for (j = 0; j < N; ++j) { x = 0;
    for (k = 0; k < N; ++k)  // dot product
      x += A[i][k] * B[k][j];
    C[i][j] = x;
  }

/* After: blocking factor = B */
for (jj = 0; jj < N; jj += B)
for (kk = 0; kk < N; kk += B)
for (i = 0; i < N; ++i)
  for (j = jj; j < min(jj+B,N); ++j) { x=0;
    for (k = kk; k < min(kk+B,N); ++k)
      x += A[i][k] * B[k][j];
    C[i][j] += x;
}
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Optimization 9: Hardware Prefetching
● Prefetch asks for data before it's needed

– Reduction of latency (miss penalty)
● Overlap the fetch from memory with

– Execution of instructions
● Principal of locality

– On a miss: request not just one (cache) block but also
 the next block

● The prefetched data might not end up in cache
– It might go to a special prefetch buffer that is cheaper to 

access than memory
● Intel Core i7 can prefetch both L1 and L2

– Pairwise prefetching (get the current and the next sequential 
block)

– May be turned off in BIOS
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Optimization 9: Hardware Prefetching contd.

● Hardware prefetching may waste bandwidth
– When the prediction accuracy is poor and most of the 

prefetched data goes unused
● Aggressive and sophisticated prefetchers

– Use extra silicon area
– Consume power
– Increase chip complexity

● Compilers may reorganize the code to increase hardware 
prefetch accuracy
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Optimization 10: Compiler Prefetching
● Compiler may insert (special) instructions that fetch data 

from memory but do not influence the current code
● Two flavors of prefetching instructions

– Register prefetches
● Data loaded into a register

– Cache prefetches
● Data loaded into cache

● Interaction with the virtual memory:
– Faulting prefetches cause virtual address faults
– Nonfaulting prefetches do not cause such faults

● Because the hardware ignores the prefetch instruction right 
before the fault

● The most common prefetch is into cache and nonfaulting
– It is called nonbinding
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Optimization 10: Compile Prefetch Example
/* Before */
for (i = 0; i < 5000; ++i)
  x[i] = 2 * x[i];

/* After */
for (i = 0; i < 5000; ++i) {
  // get ready for next iteration
  prefetch(x[i+1]); // better use cache block

  x[i] = 2 * x[i];
}

/* Even better */
for (i = 0; i < 5000; ++i) {
  // better prefetch the next cache block
  prefetch(x[i+8]);
  x[i] = 2 * x[i];
}
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Memory Technology Optimization
● Memory sits between caches and I/O devices

– Bridges the gap of few tens of cycles cache latency and
millions of cycles latency to disk

● Memory performance is measured with
– Latency

● Cache designers are concerned with that because this is the 
main factor in miss penalty

– Bandwidth
● Ever faster I/O devices (think solid disk storage) and increasing 

core counts stress the memory bandwidth
● Faster and larger cache cannot eliminate the need for main 

memory
– Even with principle of locality in mind there are codes that wait 

for memory
– Use Amdahl's law to see how important is faster memory
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Memory Technology Overview

● Memory responsiveness is measured with
– Access time

● The time between read request and data arrival
● This could also be called memory latency

– Cycle time
● Minimum time between unrelated memory requests
● Comes from the way data is stored in a single memory cell

● Two types of memory
– SRAM

● Used caches (since 1975)
– DRAM

● Used for main memory (since 1975)
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Memory Technology: SRAM

● SRAM = Static RAM
● No need for refresh (unlike DRAM)

– Hence, access time = cycle time
● Typically, 6 transistors to store a single bit

– Prevents loss of information after read
● Minimum power required to retain the charge in standby 

mode
● Most SRAM memories (caches) is not integrated into the 

chip

32

Memory Technology: DRAM
● DRAM = Dynamic RAM
● Only one transistor used to store a bit

– After a read, the information is gone
– So a read must be followed by a write to restore the state!
– Hence cycle time is longer than access time
– Using multiple banks helps hiding the rewrite of data
– Also, over time (8ms) data is lost: periodic refresh required

● Row refreshed  at once (usually part of the mem. controller)
● Number of pins required to address a single item is an issue

– Address lines are multiplexed
– Row Access Strobe (RAS) is the first half of the address
– Column Access Strobe (CAS) - the second half of the address
– Internally, DRAM is a 2D matrix and each half of the address 

works in one of the dimensions
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Memory Technology: DRAM (contd.)
● Amdahl suggested linear growth of capacity with CPU speed

– 1000 MB for every 1000 MIPS
– But Moore's law made that impossible: CPU speed grew 

faster
– Capacity grew only about half as fast in recent years

● The expected rate (from the CPU designer perspective) is 55% 
a year

– Or fourfold improvement in capacity every three years
● Memory latency (measured as row access time) improves 

only 5% per year
● Data transfer time (related to CAS) improves at over 10% a 

year
● DRAM packaging unit: DIMM

– Dual Inline Memory Module
– 8 bytes wide + ECC (Error-Correcting Code)
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Improving Memory Performance
● The main pressure comes from the Moore's law

– Faster single core CPUs need more data faster
– More cores per chip need more data faster

● Multiple accesses to the same row
– Utilizes the row buffer that holds the data from the row when 

the column portion of the address arrives
– Multiple column addresses can nowadays utilize the row 

buffer
● Synchronous DRAM

– Memory controller and the SDRAM use a clock for 
synchronization (faster than asynchronous operation)

– Also, SDRAM has burst mode
● In this mode, SDRAM delivers multiple data items without new 

address requests
● Possible due to an extra length register in SDRAM

– Supports “Critical Word First” cache optimization
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Improving Memory Performance (contd.)
● DRAM is getting wider

– Required due to every increasing density (Get more data out 
at once)

● Old DDR: 4-bit bus
● DDR 2, DDR 3: 16-bit bus (2010)

● DDR = Double Data Rate
– Single data rate: data transferred on one edge of the clock 

signal
– Double data rate: data transferred on both edges of the clock 

signal
– Effectively doubles the bandwidth with the same clock

● Multiple banks
– Helps due to interleaving (one word spread across banks)
– Smaller power consumption
– Adds delay because bank has to get opened before access
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DDR Standards and Technologies

● DDR is now a standard
– This helps interoperability, competition and results in lower 

prices
● DDR (2000)

– 2.5 V; 133, 150, 200 MHz; >100 nm
● DDR2 (2004)

– 1.8 V; 266, 333, 400 MHz; 80-90 nm
● DDR3 (2010)

– 1.5 V; 533, 666, 800 MHz; 32-40 nm
● DDR4 (expected late 2013?)

– 1-1.2 V; 1066-1600 MHz; 2x nm
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GPU Memory

● GPU memory
– GDRAM Graphics = DRAM
– GSDRAM = Graphics Synchronous DRAM

● GDDR
– GDDR5 based on DDR3, earlier GDDRs based DDR2

● GPUs demand more bandwidth because of higher 
performance due to greater parallelism

● Greater bandwidth achieved with:
– Wider interface: 32-bits (vs. 4,8,16 for CPUs)
– Higher clock rate allowed by soldering into GPU board rather 

snap in sockets for CPU DIMMs
● In practice, GDDR is 2-5x faster than DDR
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SDRAM Power Optimizations

● Higher clock rate means greater (static and dynamic) power 
draw of SDRAM

● Optimizing power becomes important as SDRAMs grow
● Common techniques include

– Reduce operating voltage (from 1.5 to 1.35)
– Introduce multiple banks

● one bank opens at a time to deliver subsequent word
– Recent SDRAMs enter power-down mode

● In this mode the memory modules ignore the clock
● However, need to keep refreshing the clock

– Usually implemented as an internal refresh circuitry
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Flash Memory Introduction

● Flash memory is a type of EEPROM
– Electronically Erasable Programmable Read-Only Memory
– Read-only under normal operation
– Erasable when special voltage applied

● The memory module is flashed = erased
● Suitable for long term storage

– Used in mobile form factors: phones, tables, laptops
● May be used as another level of memory hierarchy due the 

small size of RAM in these devices
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Flash Memory Properties
● Flash memory must be erased before overwritten

– NAND Flash (higher density Flash) erasing is done by blocks
● This becomes a software (OS kernel) problem to assemble data 

in blocks and clean up old blocks
● Flash memory is static

– No continuous refreshes, almost no power draw when inactive
● Flash has limited number of times (100k) each block can be 

written
● Cheaper than SDRAM, more expensive than disk

– Flash: $2 / GB, SDRAM: $30 / GB, Magnetic disk: $0.09 / GB
● Much slower than SDRAM, much faster than disk

– For reads: 4 times slower than SDRAM, 1000x faster than 
disk

– Writes to flash are 2x-20x slower than reads
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Memory Dependability

● Errors in memory systems
– Permanent errors during fabrication
– Dynamic errors during operation = soft errors

● Cosmic rays (high energy particles)
● Manufacturing defects are accommodated with spare rows

– After fabrication memory modules are configured
● Defective rows are disabled and spare rows replace them

● Dynamic errors are detected with parity bits and corrected 
with ECC (Error-Correcting Codes)
– Instruction caches are read-only so the parity bits suffice
– Parity bit does not detect multi-bit errors: 1 parity + 8 data bits
– ECC detects 2 and corrects 1 error for 8-bit ECC + 64-bit data
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Memory Dependability: Chipkill

● High end servers and warehouse clusters need Chipkill
– Chipkill is like RAID for Disks
– Parity bits and ECC are not kept together with data but are 

distributed
– Complete failure of a single memory module can be handled

● Developed by IBM, Intel calls it SDDC
● According to IBM analysis, 10,000 processor server with 

4GB/CPU has unrecoverable failures in 3 years:
– 90000 when only parity is used
– 3500 with ECC only
– 6 with Chipkill
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Virtual Memory Basics
● Virtual memory is

– Protection mechanism to keep process memory data private
– Context switch changes the process which the CPU is 

executing
● After switch, old process' instructions and data are not visible to 

the new process
– Cooperation between hardware (TLB=translation look-aside 

buffer, segmented memory, segmentation fault mechanism) 
and software (OS kernel)

– The same address space for each running process
● Virtual memory system is a security measure

– It's harder to break the encrypted message than to snoop it 
from cache right after the context switch

– Context switch reloads TLBs and registers but not cache
● Flushing all caches takes too many cycles for each switch
● This becomes the starting point for side-channel crypto-attacks
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Hardware Requirements for Virtual Memory

● Provide user and kernel modes of execution
– Only the kernel is allowed certain operations

● Make some CPU state read-only
– Read-only: Am I in kernel mode? vs. Change to kernel mode.

● Provide programmable way of changing modes
– Entering the kernel occurs usually with a system call and/or a 

special assembly instruction
– There is an instruction to return to the previous mode by 

restoring the register file saved before the system call
● Check memory protection for every memory access

– Limit access to memory of other processes
– Execute kernel code if segmentation violation occurs

● TLB is the main component of any Virtual Memory system
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Translation Look-aside Buffer (TLB)

● Without TLB, each memory access would be
– A load to check the translation table
– The actual memory access (if it doesn't violate the protection)

● TLB operates on the principle of locality
– If memory access have locality then the address translations 

must have locality
– If the address accessed is not in TLB then the translation must 

involve main memory
● TLB is like cache

– TLB tags store a portion of the virtual address
– TLB data is the physical address, protection bit, valid bit, use 

bit, dirty bit
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Virtual Memory Caveats

● Virtual Memory system works if both hardware and software 
are flawless
– In practice it's never the case because of bugs

● Complexity of hardware increases through Moore's law
● Complexity of OS software (millions of lines of code) increases 

with hardware complexity and new features
● Finding a security whole is a matter of time and effort
● If complexity is the problem than a simpler system has a 

better chance of being secure
– Virtual Machines have smaller “code base” in terms of 

hardware and software
– OS kernel no longer has to be trusted

● In fact, it could be a malicious OS and the VM system will keep 
it isolated
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Rationale Behind Virtual Machines

● Security becomes important issue in modern systems 
connected to the Internet

● Security failures of standard OS kernels
● Users of modern systems are unrelated and little in common

– In cloud computing, users might request different OS's
● Performance gains in CPU speed made the VM overhead 

acceptable
● The first implementations appeared in the 1960s

Wide acceptance in 2000s 
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Virtual Machine Types

● Every interpreted language could be considered a VM
– Java VM, Dalvik (Android)
– Python (Cpython, Jython, IronPython), Ruby (Rubinus), Perl 

(Parrot)
– .Net is a virtualization with the assumption that the byte code 

will be translated into assembly upon execution and never 
interpreted

– x86 code inside Chrome browser can run inside Native Client 
(NaCl)

– Emscripten translates C/C++ into obscure Javascript that runs 
very fast (asm.js project)

● Here, we are interested in VMs at binary ISA  and hardware 
levels
– We will only consider VMs that export the same ISA as the 

underlying hardware (no on-the-fly instruction translation)



  

 

49

Virtual Machine Terminology

● Virtual Machine Monitor (or Hypervisor)
– Software that supports VMs
– Much smaller than the tradition OS

● Tens of thousands of lines of code for VMM vs. many millions 
for the OS

● Host
– Underlying hardware platform

● Guest (VM)
– Software (OS with applications) that run on the VM
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Virtual Machine Overheads and Benefits
● VM comes with overhead

– CPU-bound codes experience very little slow-down
– I/O-intensive workloads end up calling the OS kernel 

frequently
● This results in system calls and privileged instruction execution
● Virtualization later has to emulate or protect these code sections
● Overhead depends on the speed of emulation/protection and is 

often noticeable (cost I/O instruction surges compared with the 
rest of instructions)

– I/O-bound applications spend most of the time in I/O
● Overhead is large by small compared to speed of disks

● Benefits of VMs
– Software management: multiple OS's and versions 

simultaneously
– Hardware management: multiplexing of server resources, 

migration on failure, load balancing overloaded servers
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Requirements for Virtual Machines

● Guest software should behave on a VM as it behaves on the 
hardware (bare metal)
– Except for overhead and limitation on resources

● Guest software should not be able to change resource 
allocation directly
– Security and isolation

● Hardware has to provide at least to modes: system (for the 
host) and user (for the guest Vms)
– This is similar to virtual memory system privileges

● Some instructions should only be available in system mode
– This is similar to virtual memory system calls and TLB 

instructions
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Impact of Virtual Machines on Virtual Memory

● Every guest OS maintains its own set of pages
– Virtualization introduces real memory
– Guest OS maps virtual address to real memory addresses
– VMM maps real memory addresses to physical address
– The mapping is done via shadow page table

● No actual table exists, no additional level of indirection
● Instead, changes to guest OS table occur through special 

instructions that trap and transfer control to VMM
– TLBs in some RISC processors include Process ID

● This eliminates the need for TLB flush upon guest VM switch
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Impact of Virtual Machines on Virtual Memory

● I/O subsystem has to be virtualized to allow sharing between 
VM guests

● Diversity of I/O devices poses a challenge
– Supporting many device drivers introduces complexity into 

VMM
– Generic drivers are often used to provide a common interface

● Physical disks are partitioned by the VMM and each partition 
becomes a disk visible to a guest VM

● Network interface are share in time slices
– VMM keeps track of virtual network addresses and delivers 

packets to the corresponding guest VM


