

Chapter 2

Memory Hierarchy Design

2

Introduction
● Goal: unlimited amount of memory with low latency
● Fast memory technology is more expensive per bit than

slower memory
– Use principle of locality (spatial and temporal)

● Solution: organize memory system into a hierarchy
– Entire addressable memory space available in largest, slowest

memory
– Incrementally smaller and faster memories, each containing a

subset of the memory below it, proceed in steps up toward the
processor

● Temporal and spatial locality insures that nearly all
references can be found in smaller memories
– Gives the illusion of a large, fast memory being presented to

the processor

3

Memory Hierarchies
CPU

Registers

L1

L2

L3

Memory

Disk
Storage

1000 B 300 ps

 64 kB 1 ns

 256 kB 3-10 ns

2-4 MB 10-20 ns

4-16 GB 50-100 ns

4-16 TB 5-10 ms

CPU
Registers

L1

L2

Memory

Flash
Storage

 500 B 500 ps

 64 kB 2 ns

 256 kB 10-20 ns

256-512 MB 50-100 ns

4-6 GB 25-50 µs

Server Personal Mobile

O
n-

di
e

In package

O
ff-

ch
ip

4

CPU vs. Memory: Performance vs Latency

5

Memory Hierarchy Design Considerations

● Memory hierarchy design becomes more crucial with recent
multi-core processors:
– Aggregate peak bandwidth grows with # cores:

● Intel Core i7 can generate two references per core per clock
● Four cores and 3.2 GHz clock

– 25.6 billion 64-bit data references/second +
– 12.8 billion 128-bit instruction references
– = 409.6 GB/s!

● DRAM bandwidth is only 6% of this (25 GB/s)
● Requires:

– Multi-port, pipelined caches
– Two levels of cache per core
– Shared third-level cache on chip

6

Performance and Power for Caches

● High-end microprocessors have >10 MB on-chip cache
– Consumes large amount of area and power budget
– Both static (idle) and dynamic power is an issue

● Personal/mobile devices have
– 20-50x smaller power budget
– 25%-50% is consumed by memory

7

Handling of Cache Misses

● When a word is not found in the cache, a miss occurs:
– Fetch word from lower level in hierarchy, requiring a higher

latency reference
– Lower level may be another cache or the main memory
– Also fetch the other words contained within the block

● Takes advantage of spatial locality
– Place block into cache in any location within its set,

determined by address
● block address MODULO number of sets

8

Cache Associativity and Writing Strategies

● n sets → n-way set associative
– Direct-mapped cache → one block per set
– Fully associative → one set

● Writing to cache: two strategies
– Write-through

● Immediately update lower levels of hierarchy
– Write-back

● Only update lower levels of hierarchy when an updated block is
replaced

– Both strategies use write buffer to make writes asynchronous

9

Miss Rate and Types of Cache Misses

● Miss rate is...
– Fraction of cache access that result in a miss

● Reasons for cache misses and their names
– Compulsory

● Cache block is referenced for the first time
– Solution: hardware and software prefetchers

– Capacity
● Cache block was discarded and later retrieved

– Solution: build bigger cache or reorganize the code
– Conflict

● Program makes repeated references to multiple addresses from
different blocks that map to the same location in the cache

– Solution: add padding or stride to code; change size of data
– Coherency

10

Calculating Miss Rate

● Note that speculative and multithreaded processors may
execute other instructions during a miss
– This reduces performance impact of misses
– But complicates analysis and introduces runtime dependence

Misses
Instruction

= Miss rate×Memory accesses
Instruction count

= Miss rate×Memory accesses
Instruction

Average memory access time = Hit time+Miss rate×Miss penalty

11

Cache and TLB Mapping Illustrated

64 7 6 … 1 0

blockcache locationsettag

Physical address space

tag ca
ch

e

stackHardware regs. heap

TLB OS kernel

Virtual address space

sets

12

Cache Design Considerations

● Larger block size
– Reduced compulsory misses
– Slightly reduced static power

(smaller tag)
– Sometimes increased capacity

and conflict misses
● Bigger cache

– Reduced miss rate
– Increased hit time
– Increased static & dynamic

power
● Higher associativity

– Reduced conflict miss rate
– Increased hit time
– Increased power

● More levels of cache
– Reduced miss penalty

● Prioritize read misses over
write misses
– Reduced miss penalty
– Need for write buffer and

hazard resolution
● Avoid address translation

during indexing of cache
– Reduced hit time
– Limited size and structure

of cache

Access time = Hit timeL1 +Miss rateL1

×(Hit timeL2+Miss rateL2×Miss penaltyL2)

13

 Categories of Metrics for Cache Optimization
● Reduce hit time

– Small and simple first-level
caches

– “way-prediction”
– Side effect: reduction in

power consumption
● Increase cache bandwidth

– Pipelined caches
– Multibanked caches
– Nonblocking caches

● Reduce miss penalty
– “Critical word first”
– Merging write buffers

● Reduce miss rate
– Compiler optimization
– Side effect: reduced power

● Reduce miss penalty and/or
rate via parallelism
– Hardware prefetching
– Software and compiler

prefetching
– Side effect: increased

power due to unused data

14

Optimization 1: Small/Simple 1st-level Caches

● 1st level cache should match the clock cycle of CPU
● Cache addressing is a three step process

– Address tag memory with index portion of address
– Compare the found tag with address tag
– Choose cache set

● High associativity helps with...
– Address aliasing
– Dealing with TLB and multiprocessing conflicts

● Low associativity...
– Is faster

● Overlap tag check with data transmission
● 10% or more for each doubling of set count

– Consumes less power

15

Optimization 2: “way prediction”
● Idea: predict “the way”

– which block within set will be accessed next
● Index multiplexor (mux) starts working early
● Implemented as extra bits kept in cache for each block
● Prediction accuracy (simulated)

– more effective of instruction caches
– > 90% for two-way associative
– > 80% for four-way associative

● On misprediction
– Try the other block
– Change the prediction bits
– Incur penalty (commonly 1 cycle for slow CPUs)

● Examples: 1st use MIPS R10000 in 1990s, ARM Cortex-A8

16

Optimization 3: Pipelined Cache Access

● Improves bandwidth
● History

– Pentium (1993) 1 cycle
– Pentium Pro (1995) 2 cycles
– Pentium III (1999) 2 cycles
– Pentium 4 (2000) 4 cycles
– Intel Core i7 (2010) 4 cycles

● Interaction with branch prediction
– Increased penalty for mispredicted branches

● Load instructions are longer
– Waiting for cache pipeline to finish

● Pipeline cache cycles make high degrees of associativity
easier to implement

17

Optimization 4: Nonblocking Caches
● If one instruction stalls on a cache miss, should the following

instruction stall if its data is in cache?
– NO

● But you have design a nonblocking cache (lockup-free cache)
– Call it “hit under miss”

● Why stop at two instructions?
– Make it “hit under multiple miss”

● What about two outstanding misses?
– “miss under miss”
– Next level cache has to be able to handle multiple misses

● Rarely the case in contemporary CPUs
● How long before our caches become

– Out-of-order, superscalar, …
– Moving the CPU innovation into the memory hierarchy?

18

Optimization 5: Multibanked Caches
● Main memory has been organized in banks for increased

bandwidth
● Caches can do this too
● Each cache block is evenly spread across banks

– Sequential interleaving
● Bank 0: blk[0] Bank 1: blk[1] Bank 2: blk[2] Bank 3: blk[3]
● Bank 0: blk[4] Bank 1: blk[5] Bank 2: blk[6] Bank 3: blk[7]

● Modern use
– ARM Cortex-A8

● 1-4 banks in L2 cache
– Intel Core i7

● 4 banks in L1 (2 memory accesses/cycle)
● 8 banks in L2

● Reduced power usage

19

Optimization 6: Critical Word 1st ,Early Restart
● Forget cache blocks (lines) deal with words

– Start executing instruction when its word arrives, not the entire
block where the word resides

● Critical word first
– What if the instruction needs the last word in the cache block?

● Go ahead and request the last word from memory before
requesting others

– Out-of-order loading of cache block words
● As soon as the word arrives pass it on to the CPU
● Continue fetching the remaining words

● Early restart
– Don't change the order of words, but supply the missing word

as soon as it arrives
● it won't help if the last word in block is needed

● Useful for large cache blocks, depends on data-stream

20

Optimization 7: Merging Write Buffer (Intro)

● Write buffer basics
– Write buffer sits between cache and memory
– Write buffer stores both: data and its address
– Write buffer allows for the store instruction to finish

immediately
● Unless the write buffer is full

– Especially useful for write-through caches
● Write-back caches will benefit for when block is replaced

21

Optimization 7: Merging Write Buffer

● Merging write buffer: a buffer that merges write requests
● When storing to a block that is already pending in the write

buffer, only update the write buffer
● Another way to look at it: the write buffer with merging is

equivalent to a larger buffer but without merging
● Merging buffer reduces stalls due to the buffer being full
● Should not be used for I/O addresses (special memory

locations)
Addr valid Data valid valid valid

100 1 M[100] 0 0 0
108 1 M[108] 0 0 0

116 1 M[116] 0 0 0

124 1 M[124] 0 0 0

Addr valid Data valid valid valid

100 1 M[100] 1 M[108] 1 M[116] 1 M[124]

af
te

r m
er

ge

22

Optimization 8: Compiler Optimizations

● No hardware changes required
● Two main techniques

– Loop interchange
● Requires 2 or more loop nests
● The order of loops is changed to walk through memory in a

more cache-friendly manner
– Loop blocking

● Additional loop nests are introduced to deal with small portion of
an array (called a block but also a tile)

23

Optimization 8: Loop Interchange

/* Before: memory stride = 100 */

for (j = 0; j < 100; ++j)
 for (i = 0; i < 5000; ++i)
 x[i][j] = 2 * x[i][j];

/* After: memory stride = 1
 * Uses all words in a single cache block */

for (i = 0; i < 5000; ++i)
 for (j = 0; j < 100; ++j)
 x[i][j] = 2 * x[i][j];

24

Optimization 8: Blocking
/* Before: memory stride: A → 1, B → N */
for (i = 0; i < N; ++i)
 for (j = 0; j < N; ++j) { x = 0;
 for (k = 0; k < N; ++k) // dot product
 x += A[i][k] * B[k][j];
 C[i][j] = x;
 }

/* After: blocking factor = B */
for (jj = 0; jj < N; jj += B)
for (kk = 0; kk < N; kk += B)
for (i = 0; i < N; ++i)
 for (j = jj; j < min(jj+B,N); ++j) { x=0;
 for (k = kk; k < min(kk+B,N); ++k)
 x += A[i][k] * B[k][j];
 C[i][j] += x;
}

25

Optimization 9: Hardware Prefetching
● Prefetch asks for data before it's needed

– Reduction of latency (miss penalty)
● Overlap the fetch from memory with

– Execution of instructions
● Principal of locality

– On a miss: request not just one (cache) block but also
 the next block

● The prefetched data might not end up in cache
– It might go to a special prefetch buffer that is cheaper to

access than memory
● Intel Core i7 can prefetch both L1 and L2

– Pairwise prefetching (get the current and the next sequential
block)

– May be turned off in BIOS

26

Optimization 9: Hardware Prefetching contd.

● Hardware prefetching may waste bandwidth
– When the prediction accuracy is poor and most of the

prefetched data goes unused
● Aggressive and sophisticated prefetchers

– Use extra silicon area
– Consume power
– Increase chip complexity

● Compilers may reorganize the code to increase hardware
prefetch accuracy

27

Optimization 10: Compiler Prefetching
● Compiler may insert (special) instructions that fetch data

from memory but do not influence the current code
● Two flavors of prefetching instructions

– Register prefetches
● Data loaded into a register

– Cache prefetches
● Data loaded into cache

● Interaction with the virtual memory:
– Faulting prefetches cause virtual address faults
– Nonfaulting prefetches do not cause such faults

● Because the hardware ignores the prefetch instruction right
before the fault

● The most common prefetch is into cache and nonfaulting
– It is called nonbinding

28

Optimization 10: Compile Prefetch Example
/* Before */
for (i = 0; i < 5000; ++i)
 x[i] = 2 * x[i];

/* After */
for (i = 0; i < 5000; ++i) {
 // get ready for next iteration
 prefetch(x[i+1]); // better use cache block

 x[i] = 2 * x[i];
}

/* Even better */
for (i = 0; i < 5000; ++i) {
 // better prefetch the next cache block
 prefetch(x[i+8]);
 x[i] = 2 * x[i];
}

29

Memory Technology Optimization
● Memory sits between caches and I/O devices

– Bridges the gap of few tens of cycles cache latency and
millions of cycles latency to disk

● Memory performance is measured with
– Latency

● Cache designers are concerned with that because this is the
main factor in miss penalty

– Bandwidth
● Ever faster I/O devices (think solid disk storage) and increasing

core counts stress the memory bandwidth
● Faster and larger cache cannot eliminate the need for main

memory
– Even with principle of locality in mind there are codes that wait

for memory
– Use Amdahl's law to see how important is faster memory

30

Memory Technology Overview

● Memory responsiveness is measured with
– Access time

● The time between read request and data arrival
● This could also be called memory latency

– Cycle time
● Minimum time between unrelated memory requests
● Comes from the way data is stored in a single memory cell

● Two types of memory
– SRAM

● Used caches (since 1975)
– DRAM

● Used for main memory (since 1975)

31

Memory Technology: SRAM

● SRAM = Static RAM
● No need for refresh (unlike DRAM)

– Hence, access time = cycle time
● Typically, 6 transistors to store a single bit

– Prevents loss of information after read
● Minimum power required to retain the charge in standby

mode
● Most SRAM memories (caches) is not integrated into the

chip

32

Memory Technology: DRAM
● DRAM = Dynamic RAM
● Only one transistor used to store a bit

– After a read, the information is gone
– So a read must be followed by a write to restore the state!
– Hence cycle time is longer than access time
– Using multiple banks helps hiding the rewrite of data
– Also, over time (8ms) data is lost: periodic refresh required

● Row refreshed at once (usually part of the mem. controller)
● Number of pins required to address a single item is an issue

– Address lines are multiplexed
– Row Access Strobe (RAS) is the first half of the address
– Column Access Strobe (CAS) - the second half of the address
– Internally, DRAM is a 2D matrix and each half of the address

works in one of the dimensions

33

Memory Technology: DRAM (contd.)
● Amdahl suggested linear growth of capacity with CPU speed

– 1000 MB for every 1000 MIPS
– But Moore's law made that impossible: CPU speed grew

faster
– Capacity grew only about half as fast in recent years

● The expected rate (from the CPU designer perspective) is 55%
a year

– Or fourfold improvement in capacity every three years
● Memory latency (measured as row access time) improves

only 5% per year
● Data transfer time (related to CAS) improves at over 10% a

year
● DRAM packaging unit: DIMM

– Dual Inline Memory Module
– 8 bytes wide + ECC (Error-Correcting Code)

34

Improving Memory Performance
● The main pressure comes from the Moore's law

– Faster single core CPUs need more data faster
– More cores per chip need more data faster

● Multiple accesses to the same row
– Utilizes the row buffer that holds the data from the row when

the column portion of the address arrives
– Multiple column addresses can nowadays utilize the row

buffer
● Synchronous DRAM

– Memory controller and the SDRAM use a clock for
synchronization (faster than asynchronous operation)

– Also, SDRAM has burst mode
● In this mode, SDRAM delivers multiple data items without new

address requests
● Possible due to an extra length register in SDRAM

– Supports “Critical Word First” cache optimization

35

Improving Memory Performance (contd.)
● DRAM is getting wider

– Required due to every increasing density (Get more data out
at once)

● Old DDR: 4-bit bus
● DDR 2, DDR 3: 16-bit bus (2010)

● DDR = Double Data Rate
– Single data rate: data transferred on one edge of the clock

signal
– Double data rate: data transferred on both edges of the clock

signal
– Effectively doubles the bandwidth with the same clock

● Multiple banks
– Helps due to interleaving (one word spread across banks)
– Smaller power consumption
– Adds delay because bank has to get opened before access

36

DDR Standards and Technologies

● DDR is now a standard
– This helps interoperability, competition and results in lower

prices
● DDR (2000)

– 2.5 V; 133, 150, 200 MHz; >100 nm
● DDR2 (2004)

– 1.8 V; 266, 333, 400 MHz; 80-90 nm
● DDR3 (2010)

– 1.5 V; 533, 666, 800 MHz; 32-40 nm
● DDR4 (expected late 2013?)

– 1-1.2 V; 1066-1600 MHz; 2x nm

37

GPU Memory

● GPU memory
– GDRAM Graphics = DRAM
– GSDRAM = Graphics Synchronous DRAM

● GDDR
– GDDR5 based on DDR3, earlier GDDRs based DDR2

● GPUs demand more bandwidth because of higher
performance due to greater parallelism

● Greater bandwidth achieved with:
– Wider interface: 32-bits (vs. 4,8,16 for CPUs)
– Higher clock rate allowed by soldering into GPU board rather

snap in sockets for CPU DIMMs
● In practice, GDDR is 2-5x faster than DDR

38

SDRAM Power Optimizations

● Higher clock rate means greater (static and dynamic) power
draw of SDRAM

● Optimizing power becomes important as SDRAMs grow
● Common techniques include

– Reduce operating voltage (from 1.5 to 1.35)
– Introduce multiple banks

● one bank opens at a time to deliver subsequent word
– Recent SDRAMs enter power-down mode

● In this mode the memory modules ignore the clock
● However, need to keep refreshing the clock

– Usually implemented as an internal refresh circuitry

39

Flash Memory Introduction

● Flash memory is a type of EEPROM
– Electronically Erasable Programmable Read-Only Memory
– Read-only under normal operation
– Erasable when special voltage applied

● The memory module is flashed = erased
● Suitable for long term storage

– Used in mobile form factors: phones, tables, laptops
● May be used as another level of memory hierarchy due the

small size of RAM in these devices

40

Flash Memory Properties
● Flash memory must be erased before overwritten

– NAND Flash (higher density Flash) erasing is done by blocks
● This becomes a software (OS kernel) problem to assemble data

in blocks and clean up old blocks
● Flash memory is static

– No continuous refreshes, almost no power draw when inactive
● Flash has limited number of times (100k) each block can be

written
● Cheaper than SDRAM, more expensive than disk

– Flash: $2 / GB, SDRAM: $30 / GB, Magnetic disk: $0.09 / GB
● Much slower than SDRAM, much faster than disk

– For reads: 4 times slower than SDRAM, 1000x faster than
disk

– Writes to flash are 2x-20x slower than reads

41

Memory Dependability

● Errors in memory systems
– Permanent errors during fabrication
– Dynamic errors during operation = soft errors

● Cosmic rays (high energy particles)
● Manufacturing defects are accommodated with spare rows

– After fabrication memory modules are configured
● Defective rows are disabled and spare rows replace them

● Dynamic errors are detected with parity bits and corrected
with ECC (Error-Correcting Codes)
– Instruction caches are read-only so the parity bits suffice
– Parity bit does not detect multi-bit errors: 1 parity + 8 data bits
– ECC detects 2 and corrects 1 error for 8-bit ECC + 64-bit data

42

Memory Dependability: Chipkill

● High end servers and warehouse clusters need Chipkill
– Chipkill is like RAID for Disks
– Parity bits and ECC are not kept together with data but are

distributed
– Complete failure of a single memory module can be handled

● Developed by IBM, Intel calls it SDDC
● According to IBM analysis, 10,000 processor server with

4GB/CPU has unrecoverable failures in 3 years:
– 90000 when only parity is used
– 3500 with ECC only
– 6 with Chipkill

43

Virtual Memory Basics
● Virtual memory is

– Protection mechanism to keep process memory data private
– Context switch changes the process which the CPU is

executing
● After switch, old process' instructions and data are not visible to

the new process
– Cooperation between hardware (TLB=translation look-aside

buffer, segmented memory, segmentation fault mechanism)
and software (OS kernel)

– The same address space for each running process
● Virtual memory system is a security measure

– It's harder to break the encrypted message than to snoop it
from cache right after the context switch

– Context switch reloads TLBs and registers but not cache
● Flushing all caches takes too many cycles for each switch
● This becomes the starting point for side-channel crypto-attacks

44

Hardware Requirements for Virtual Memory

● Provide user and kernel modes of execution
– Only the kernel is allowed certain operations

● Make some CPU state read-only
– Read-only: Am I in kernel mode? vs. Change to kernel mode.

● Provide programmable way of changing modes
– Entering the kernel occurs usually with a system call and/or a

special assembly instruction
– There is an instruction to return to the previous mode by

restoring the register file saved before the system call
● Check memory protection for every memory access

– Limit access to memory of other processes
– Execute kernel code if segmentation violation occurs

● TLB is the main component of any Virtual Memory system

45

Translation Look-aside Buffer (TLB)

● Without TLB, each memory access would be
– A load to check the translation table
– The actual memory access (if it doesn't violate the protection)

● TLB operates on the principle of locality
– If memory access have locality then the address translations

must have locality
– If the address accessed is not in TLB then the translation must

involve main memory
● TLB is like cache

– TLB tags store a portion of the virtual address
– TLB data is the physical address, protection bit, valid bit, use

bit, dirty bit

46

Virtual Memory Caveats

● Virtual Memory system works if both hardware and software
are flawless
– In practice it's never the case because of bugs

● Complexity of hardware increases through Moore's law
● Complexity of OS software (millions of lines of code) increases

with hardware complexity and new features
● Finding a security whole is a matter of time and effort
● If complexity is the problem than a simpler system has a

better chance of being secure
– Virtual Machines have smaller “code base” in terms of

hardware and software
– OS kernel no longer has to be trusted

● In fact, it could be a malicious OS and the VM system will keep
it isolated

47

Rationale Behind Virtual Machines

● Security becomes important issue in modern systems
connected to the Internet

● Security failures of standard OS kernels
● Users of modern systems are unrelated and little in common

– In cloud computing, users might request different OS's
● Performance gains in CPU speed made the VM overhead

acceptable
● The first implementations appeared in the 1960s

Wide acceptance in 2000s

48

Virtual Machine Types

● Every interpreted language could be considered a VM
– Java VM, Dalvik (Android)
– Python (Cpython, Jython, IronPython), Ruby (Rubinus), Perl

(Parrot)
– .Net is a virtualization with the assumption that the byte code

will be translated into assembly upon execution and never
interpreted

– x86 code inside Chrome browser can run inside Native Client
(NaCl)

– Emscripten translates C/C++ into obscure Javascript that runs
very fast (asm.js project)

● Here, we are interested in VMs at binary ISA and hardware
levels
– We will only consider VMs that export the same ISA as the

underlying hardware (no on-the-fly instruction translation)

49

Virtual Machine Terminology

● Virtual Machine Monitor (or Hypervisor)
– Software that supports VMs
– Much smaller than the tradition OS

● Tens of thousands of lines of code for VMM vs. many millions
for the OS

● Host
– Underlying hardware platform

● Guest (VM)
– Software (OS with applications) that run on the VM

50

Virtual Machine Overheads and Benefits
● VM comes with overhead

– CPU-bound codes experience very little slow-down
– I/O-intensive workloads end up calling the OS kernel

frequently
● This results in system calls and privileged instruction execution
● Virtualization later has to emulate or protect these code sections
● Overhead depends on the speed of emulation/protection and is

often noticeable (cost I/O instruction surges compared with the
rest of instructions)

– I/O-bound applications spend most of the time in I/O
● Overhead is large by small compared to speed of disks

● Benefits of VMs
– Software management: multiple OS's and versions

simultaneously
– Hardware management: multiplexing of server resources,

migration on failure, load balancing overloaded servers

51

Requirements for Virtual Machines

● Guest software should behave on a VM as it behaves on the
hardware (bare metal)
– Except for overhead and limitation on resources

● Guest software should not be able to change resource
allocation directly
– Security and isolation

● Hardware has to provide at least to modes: system (for the
host) and user (for the guest Vms)
– This is similar to virtual memory system privileges

● Some instructions should only be available in system mode
– This is similar to virtual memory system calls and TLB

instructions

52

Impact of Virtual Machines on Virtual Memory

● Every guest OS maintains its own set of pages
– Virtualization introduces real memory
– Guest OS maps virtual address to real memory addresses
– VMM maps real memory addresses to physical address
– The mapping is done via shadow page table

● No actual table exists, no additional level of indirection
● Instead, changes to guest OS table occur through special

instructions that trap and transfer control to VMM
– TLBs in some RISC processors include Process ID

● This eliminates the need for TLB flush upon guest VM switch

53

Impact of Virtual Machines on Virtual Memory

● I/O subsystem has to be virtualized to allow sharing between
VM guests

● Diversity of I/O devices poses a challenge
– Supporting many device drivers introduces complexity into

VMM
– Generic drivers are often used to provide a common interface

● Physical disks are partitioned by the VMM and each partition
becomes a disk visible to a guest VM

● Network interface are share in time slices
– VMM keeps track of virtual network addresses and delivers

packets to the corresponding guest VM

