Chapter 2 CPU vs. Memory: Performance vs Latency

100,000
10,000
) //'
2 1,000
£ Proce’s/s.(g./'/./'
Memory Hierarchy Design 5 o
. //
W
1 T T T T T
1980 1985 1990 1995 2000 2005 2010
Year
4
Introduction Memory Hierarchy Design Considerations
« Goal: unlimited amount of memory with low latency
« Fast memory technology is more expensive per bit than « Memory hierarchy design becomes more crucial with recent
slower memory multi-core processors:
- Use principle of locality (spatial and temporal) - Aggregate peak bandwidth grows with # cores:
« Solution: organize memory system into a hierarchy « Intel Core i7 can generate two references per core per clock
- Entire addressable memory space available in largest, slowest » Four corgs and 3'2 GHz clock
memory - 25.6 billion 64-bit data references/second +
. L - 12.8 billion 128-bit instruction references
- Incrementally smaller and faster memories, each containing a _ = 409.6 GB/s!
subset of the memory below it, proceed in steps up toward the « DRAM bandwidth is only 6% of this (25 GB/s)
processor Requires:
. . « Requires:
« Temporal and spatial locality insures that nearly all - Multi-port, pipelined caches
references can be found in smaller memories - Two levels of cache per core
- Gives the illusion of a large, fast memory being presented to - Shared third-level cache on chip
the processor
2 5
Memory Hierarchies Performance and Power for Caches
Registers 1000 B 300 ps Registers 500B 500 ps o
64kB lns 64kB 2ns ?
(o)
256 kB 3-10ns 256 kB 10-20 ns

_____________ « High-end microprocessors have >10 MB on-chip cache
24MB 1020 ns In package - Consumes large amount of area and power budget
- Both static (idle) and dynamic power is an issue
« Personal/mobile devices have
- 20-50x smaller power budget
- 25%-50% is consumed by memory

(Memory __)416GB 50-100ns [__Memory __256-512MB 50100 s

5 5
Disk . : Flash . :
4-16TB 5-10 ms 4-6GB 2550 s

Server Personal Mobile

Off-chip

Handling of Cache Misses

« When a word is not found in the cache, a miss occurs:

- Fetch word from lower level in hierarchy, requiring a higher
latency reference

- Lower level may be another cache or the main memory
- Also fetch the other words contained within the block
« Takes advantage of spatial locality

- Place block into cache in any location within its set,
determined by address

« block address MODULO number of sets

Cache Associativity and Writing Strategies

Calculating Miss Rate

« n sets — n-way set associative

- Direct-mapped cache — one block per set
- Fully associative — one set

« Writing to cache: two strategies
- Write-through

« Immediately update lower levels of hierarchy
- Write-back

« Only update lower levels of hierarchy when an updated block is
replaced

- Both strategies use write buffer to make writes asynchronous

Miss Rate and Types of Cache Misses

Misses _ Miss rate XMemory accesses _ Miss rate XMemory accesses

Instruction Instruction count Instruction

Average memory access time = Hit time +Miss rate XMiss penalty

« Note that speculative and multithreaded processors may
execute other instructions during a miss

- This reduces performance impact of misses
- But complicates analysis and introduces runtime dependence

Cache and TLB Mapping lllustrated

Miss rate is...
- Fraction of cache access that result in a miss

Reasons for cache misses and their names
- Compulsory

« Cache block is referenced for the first time
- Solution: hardware and software prefetchers
- Capacity
« Cache block was discarded and later retrieved

- Solution: build bigger cache or reorganize the code
- Conflict

« Program makes repeated references to multiple addresses from
different blocks that map to the same location in the cache

- Solution: add padding or stride to code; change size of data
- Coherency

tag set cache location block

[64 |] 7[6..10]

Physical address space

Hardware regs. heap I

s(@
+’b 1
(fag L () sets

stack |

Virtual address space

Cache Design Considerations

« Larger block size « More levels of cache

- Reduced compulsory misses

- Slightly reduced static power
(smaller tag)

- Sometimes increased capacity
and conflict misses

» Bigger cache

- Reduced miss penalty
Access time = Hit time;, +Miss rate, ,

X(Hit time, , +Miss rate ,XMiss penalty,,)

« Prioritize read misses over
write misses

- Reduced miss penalty

- Need for write buffer and
hazard resolution

« Avoid address translation
during indexing of cache

- Reduced hit time

- Limited size and structure
of cache

- Reduced miss rate
- Increased hit time

- Increased static & dynamic
power

« Higher associativity
- Reduced conflict miss rate
- Increased hit time
- Increased power

12

Categories of Metrics for Cache Optimization

« Reduce hit time

- Small and simple first-level
caches

- “way-prediction”

- Side effect: reduction in
power consumption

« Increase cache bandwidth
- Pipelined caches
- Multibanked caches
- Nonblocking caches
» Reduce miss penalty
- “Critical word first”
- Merging write buffers

» Reduce miss rate
- Compiler optimization
- Side effect: reduced power

« Reduce miss penalty and/or
rate via parallelism

- Hardware prefetching

- Software and compiler
prefetching

- Side effect: increased
power due to unused data

Optimization 1: Small/Simple 1%-level Caches

1*' level cache should match the clock cycle of CPU
Cache addressing is a three step process
- Address tag memory with index portion of address
- Compare the found tag with address tag
- Choose cache set
« High associativity helps with...
- Address aliasing
- Dealing with TLB and multiprocessing conflicts
Low associativity...
- Is faster
« Overlap tag check with data transmission

» 10% or more for each doubling of set count
- Consumes less power

Optimization 2: “way prediction”

Idea: predict “the way”

- which block within set will be accessed next

Index multiplexor (mux) starts working early

« Implemented as extra bits kept in cache for each block
Prediction accuracy (simulated)

- more effective of instruction caches

- >90% for two-way associative

- > 80% for four-way associative

On misprediction

- Try the other block

- Change the prediction bits

- Incur penalty (commonly 1 cycle for slow CPUs)
Examples: 1% use MIPS R10000 in 1990s, ARM Cortex-A8

15

Optimization 3: Pipelined Cache Access

« Improves bandwidth

« History
- Pentium (1993) 1 cycle
- Pentium Pro (1995) 2 cycles

- Pentium Il (1999) 2 cycles
- Pentium 4 (2000) 4 cycles
- Intel Core i7 (2010) 4 cycles

« Interaction with branch prediction

- Increased penalty for mispredicted branches
» Load instructions are longer

- Waiting for cache pipeline to finish

» Pipeline cache cycles make high degrees of associativity
easier to implement

Optimization 4: Nonblocking Caches

If one instruction stalls on a cache miss, should the following
instruction stall if its data is in cache?

- NO
« But you have design a nonblocking cache (lockup-free cache)
- Call it “hit under miss”

Why stop at two instructions?

- Make it “hit under multiple miss”

What about two outstanding misses?

- “miss under miss”

- Next level cache has to be able to handle multiple misses
« Rarely the case in contemporary CPUs

How long before our caches become

- Out-of-order, superscalar, ...

- Moving the CPU innovation into the memory hierarchy?

Optimization 5: Multibanked Caches

Main memory has been organized in banks for increased
bandwidth

Caches can do this too

Each cache block is evenly spread across banks
- Sequential interleaving

« Bank 0: blk[0] Bank 1:blk[1] Bank 2: blk[2] Bank 3: blk[3]
. Bank 0: blk[4] Bank 1: blk[5] Bank 2: blk[6] Bank 3: blk[7]
Modern use

- ARM Cortex-A8
« 1-4 banks in L2 cache
- Intel Core i7

« 4 banks in L1 (2 memory accesses/cycle)
» 8 banks in L2
Reduced power usage

Optimization 6: Critical Word 1°,Early Restart

« Forget cache blocks (lines) deal with words

- Start executing instruction when its word arrives, not the entire
block where the word resides

Critical word first
- What if the instruction needs the last word in the cache block?

« Go ahead and request the last word from memory before
requesting others

- Out-of-order loading of cache block words

« As soon as the word arrives pass it on to the CPU

« Continue fetching the remaining words
Early restart
- Don't change the order of words, but supply the missing word

as soon as it arrives

« it won't help if the last word in block is needed

Useful for large cache blocks, depends on data-stream

19

Optimization 7: Merging Write Buffer (Intro)

« Write buffer basics
- Write buffer sits between cache and memory
- Write buffer stores both: data and its address

Write buffer allows for the store instruction to finish
immediately

« Unless the write buffer is full
Especially useful for write-through caches
« Write-back caches will benefit for when block is replaced

20

Optimization 7: Merging Write Buffer

Optimization 8: Compiler Optimizations

« No hardware changes required
« Two main techniques
- Loop interchange

» Requires 2 or more loop nests

» The order of loops is changed to walk through memory in a
more cache-friendly manner

- Loop blocking

« Additional loop nests are introduced to deal with small portion of
an array (called a block but also a tile)

22

Optimization 8: Loop Interchange

« Merging write buffer: a buffer that merges write requests

« When storing to a block that is already pending in the write
buffer, only update the write buffer

« Another way to look at it: the write buffer with merging is
equivalent to a larger buffer but without merging

« Merging buffer reduces stalls due to the buffer being full

« Should not be used for I/O addresses (special memory
locations)
1 1 [| [[|
(5 T S) e
124 1 M[124] 0 0 0

. 1 [| | [|
IS S N O N

after merge

/* Before: memory stride = 100 */

for (j = 0; j < 100; ++j)
for (i = 0; i < 5000; ++i)
x[i][3] = 2 * x[i][]];

Jguogu

/* After: memory stride =
* Uses all words in a s:.ngle cache block */

for (i = 0; i < 5000; ++i)
for (j = 0; j < 100; ++j)
x[i1[j] = 2 * x[i][j];

23

Optimization 8: Blocking

/* Before: memory stride: A -+ 1, B - N */
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j) { x = 0;
for (k = 0; k < N; ++k) // dot product
X += A[i][k] * B[k1[]l;
CL[i][3] = x;

oo god

/* After: blocking factor = B */
for (jj = 0; jj < N; jj += B)
for (kk = 0; kk < N; kk += B)
for (i = 0; i < N; ++i)
for (j = jj; 3 < min(jj+B,N); ++j) { x=0;
for (k = kk; k < min(kk+B,N); ++k)
x += A[i][k] * B[k][]];
CL[i][]] += x;

24

Optimization 9: Hardware Prefetching

« Prefetch asks for data before it's needed
- Reduction of latency (miss penalty)

« Overlap the fetch from memory with
- Execution of instructions

« Principal of locality

- On a miss: request not just one (cache) block but also
the next block

« The prefetched data might not end up in cache

- It might go to a special prefetch buffer that is cheaper to
access than memory

« Intel Core i7 can prefetch both L1 and L2

- Pairwise prefetching (get the current and the next sequential
block)

- May be turned off in BIOS

25

Optimization 9: Hardware Prefetching contd.

« Hardware prefetching may waste bandwidth

- When the prediction accuracy is poor and most of the
prefetched data goes unused

« Aggressive and sophisticated prefetchers
- Use extra silicon area
- Consume power
- Increase chip complexity

« Compilers may reorganize the code to increase hardware
prefetch accuracy

26

Optimization 10: Compiler Prefetching

« Compiler may insert (special) instructions that fetch data
from memory but do not influence the current code
Two flavors of prefetching instructions
- Register prefetches
« Data loaded into a register
- Cache prefetches
« Data loaded into cache
Interaction with the virtual memory:

- Faulting prefetches cause virtual address faults
- Nonfaulting prefetches do not cause such faults

» Because the hardware ignores the prefetch instruction right
before the fault

The most common prefetch is into cache and nonfaulting
- Itis called nonbinding

27

Optimization 10: Compile Prefetch Example

/* Before */
for (i = 0; i < 5000; ++i)
x[i] 2 * x[i];

/* After */

for (i = 0; i < 5000; ++i) {
// get ready for next iteration
prefetch(x[i+1]); // better use cache block

x[i] = 2 * x[i];

/* Even better */

for (i = 0; i < 5000; ++i) {
// better prefetch the next cache block
prefetch(x[i+8]);
x[i] = 2 * x[i];

28

Memory Technology Optimization

« Memory sits between caches and 1/0O devices

- Bridges the gap of few tens of cycles cache latency and
millions of cycles latency to disk

« Memory performance is measured with
- Latency

« Cache designers are concerned with that because this is the
main factor in miss penalty

- Bandwidth

« Ever faster 1/0 devices (think solid disk storage) and increasing
core counts stress the memory bandwidth

« Faster and larger cache cannot eliminate the need for main
memory

- Even with principle of locality in mind there are codes that wait
for memory

- Use Amdahl's law to see how important is faster memory
29

Memory Technology Overview

Memory responsiveness is measured with
- Access time
« The time between read request and data arrival
« This could also be called memory latency
- Cycle time
« Minimum time between unrelated memory requests
« Comes from the way data is stored in a single memory cell

Two types of memory
- SRAM
« Used caches (since 1975)
- DRAM
« Used for main memory (since 1975)

30

Memory Technology: SRAM

« SRAM = Static RAM

« No need for refresh (unlike DRAM)
- Hence, access time = cycle time

« Typically, 6 transistors to store a single bit
- Prevents loss of information after read

« Minimum power required to retain the charge in standby
mode

« Most SRAM memories (caches) is not integrated into the
chip

31

Memory Technology: DRAM

DRAM = Dynamic RAM
Only one transistor used to store a bit
After a read, the information is gone
- So a read must be followed by a write to restore the state!
Hence cycle time is longer than access time
Using multiple banks helps hiding the rewrite of data
Also, over time (8ms) data is lost: periodic refresh required
« Row refreshed at once (usually part of the mem. controller)
Number of pins required to address a single item is an issue
- Address lines are multiplexed
- Row Access Strobe (RAS) is the first half of the address
- Column Access Strobe (CAS) - the second half of the address

- Internally, DRAM is a 2D matrix and each half of the address
works in one of the dimensions

32

Memory Technology: DRAM (contd.)

Amdahl suggested linear growth of capacity with CPU speed
- 1000 MB for every 1000 MIPS

- But Moore's law made that impossible: CPU speed grew
faster

- Capacity grew only about half as fast in recent years

« The expected rate (from the CPU designer perspective) is 55%
ayear

- Or fourfold improvement in capacity every three years

Memory latency (measured as row access time) improves
only 5% per year

Data transfer time (related to CAS) improves at over 10% a
year

DRAM packaging unit: DIMM
- Dual Inline Memory Module

- 8 bytes wide + ECC (Error-Correcting Code)
33

Improving Memory Performance

« The main pressure comes from the Moore's law
- Faster single core CPUs need more data faster
- More cores per chip need more data faster

« Multiple accesses to the same row

- Utilizes the row buffer that holds the data from the row when
the column portion of the address arrives

- Multiple column addresses can nowadays utilize the row
buffer

« Synchronous DRAM

- Memory controller and the SDRAM use a clock for
synchronization (faster than asynchronous operation)

- Also, SDRAM has burst mode

« In this mode, SDRAM delivers multiple data items without new
address requests

« Possible due to an extra length register in SDRAM

Quinnarte “Critinal \AlAard Eiret’ nanha Antimizatinn 34

Improving Memory Performance (contd.)

« DRAM is getting wider

- Required due to every increasing density (Get more data out
at once)
« Old DDR: 4-bit bus
« DDR 2, DDR 3: 16-bit bus (2010)
« DDR = Double Data Rate

- Single data rate: data transferred on one edge of the clock
signal

- Double data rate: data transferred on both edges of the clock
signal

- Effectively doubles the bandwidth with the same clock
« Multiple banks
- Helps due to interleaving (one word spread across banks)
- Smaller power consumption
- Adds delay because bank has to get opened before access o

DDR Standards and Technologies

« DDR is now a standard

- This helps interoperability, competition and results in lower
prices

. DDR (2000)

- 2.5V;133, 150, 200 MHz; >100 nm
- DDR2 (2004)

- 1.8V; 266, 333, 400 MHz; 80-90 nm
- DDR3 (2010)

- 1.5V; 538, 666, 800 MHz; 32-40 nm
« DDR4 (expected late 20137?)

- 1-1.2V; 1066-1600 MHz; 2x nm

36

GPU Memory

« GPU memory
- GDRAM Graphics = DRAM
- GSDRAM = Graphics Synchronous DRAM
- GDDR
- GDDR5 based on DDRS3, earlier GDDRs based DDR2

« GPUs demand more bandwidth because of higher
performance due to greater parallelism

Greater bandwidth achieved with:
- Wider interface: 32-bits (vs. 4,8,16 for CPUs)

- Higher clock rate allowed by soldering into GPU board rather
snap in sockets for CPU DIMMs

In practice, GDDR is 2-5x faster than DDR

37

SDRAM Power Optimizations

« Higher clock rate means greater (static and dynamic) power
draw of SDRAM

« Optimizing power becomes important as SDRAMs grow
« Common techniques include
- Reduce operating voltage (from 1.5 to 1.35)
- Introduce multiple banks
« one bank opens at a time to deliver subsequent word
- Recent SDRAMSs enter power-down mode

« In this mode the memory modules ignore the clock
« However, need to keep refreshing the clock
- Usually implemented as an internal refresh circuitry

38

Flash Memory Introduction

« Flash memory is a type of EEPROM
- Electronically Erasable Programmable Read-Only Memory
- Read-only under normal operation
- Erasable when special voltage applied
« The memory module is flashed = erased
« Suitable for long term storage
- Used in mobile form factors: phones, tables, laptops

« May be used as another level of memory hierarchy due the
small size of RAM in these devices

39

Flash Memory Properties

« Flash memory must be erased before overwritten
- NAND Flash (higher density Flash) erasing is done by blocks

« This becomes a software (OS kernel) problem to assemble data
in blocks and clean up old blocks

« Flash memory is static
- No continuous refreshes, almost no power draw when inactive

« Flash has limited number of times (100k) each block can be
written

« Cheaper than SDRAM, more expensive than disk
- Flash: $2 / GB, SDRAM: $30 / GB, Magnetic disk: $0.09 / GB
« Much slower than SDRAM, much faster than disk

- For reads: 4 times slower than SDRAM, 1000x faster than
disk

- Writes to flash are 2x-20x slower than reads
40

Memory Dependability

« Errors in memory systems
- Permanent errors during fabrication
- Dynamic errors during operation = soft errors
« Cosmic rays (high energy particles)
« Manufacturing defects are accommodated with spare rows
- After fabrication memory modules are configured
« Defective rows are disabled and spare rows replace them

« Dynamic errors are detected with parity bits and corrected
with ECC (Error-Correcting Codes)

- Instruction caches are read-only so the parity bits suffice
- Parity bit does not detect multi-bit errors: 1 parity + 8 data bits
- ECC detects 2 and corrects 1 error for 8-bit ECC + 64-bit data

41

Memory Dependability: Chipkill

« High end servers and warehouse clusters need Chipkill
- Chipkill is like RAID for Disks

- Parity bits and ECC are not kept together with data but are
distributed

- Complete failure of a single memory module can be handled
« Developed by IBM, Intel calls it SDDC

« According to IBM analysis, 10,000 processor server with
4GB/CPU has unrecoverable failures in 3 years:

- 90000 when only parity is used
- 3500 with ECC only
- 6 with Chipkill

42

Virtual Memory Basics

« Virtual memory is
- Protection mechanism to keep process memory data private

- Context switch changes the process which the CPU is
executing

« After switch, old process' instructions and data are not visible to
the new process

- Cooperation between hardware (TLB=translation look-aside
buffer, segmented memory, segmentation fault mechanism)
and software (OS kernel)

- The same address space for each running process
« Virtual memory system is a security measure

- It's harder to break the encrypted message than to snoop it
from cache right after the context switch

- Context switch reloads TLBs and registers but not cache
« Flushing all caches takes too many cycles for each switch
« This becomes the starting point for side-channel crypto-attacks,s

Hardware Requirements for Virtual Memory

« Provide user and kernel modes of execution

- Only the kernel is allowed certain operations
« Make some CPU state read-only

- Read-only: Am | in kernel mode? vs. Change to kernel mode.
« Provide programmable way of changing modes

- Entering the kernel occurs usually with a system call and/or a
special assembly instruction

- There is an instruction to return to the previous mode by
restoring the register file saved before the system call

« Check memory protection for every memory access
- Limit access to memory of other processes
- Execute kernel code if segmentation violation occurs

« TLB is the main component of any Virtual Memory system
44

Translation Look-aside Buffer (TLB)

« Without TLB, each memory access would be

- Aload to check the translation table

- The actual memory access (if it doesn't violate the protection)
« TLB operates on the principle of locality

- If memory access have locality then the address translations
must have locality

- If the address accessed is not in TLB then the translation must
involve main memory

« TLB is like cache
- TLB tags store a portion of the virtual address

- TLB data is the physical address, protection bit, valid bit, use
bit, dirty bit

45

Virtual Memory Caveats

Virtual Memory system works if both hardware and software
are flawless
- In practice it's never the case because of bugs

« Complexity of hardware increases through Moore's law

« Complexity of OS software (millions of lines of code) increases
with hardware complexity and new features

Finding a security whole is a matter of time and effort
If complexity is the problem than a simpler system has a
better chance of being secure

- Virtual Machines have smaller “code base” in terms of
hardware and software

- OS kernel no longer has to be trusted

« In fact, it could be a malicious OS and the VM system will keep
it isolated

46

Rationale Behind Virtual Machines

Security becomes important issue in modern systems
connected to the Internet

Security failures of standard OS kernels
Users of modern systems are unrelated and little in common
- In cloud computing, users might request different OS's

Performance gains in CPU speed made the VM overhead
acceptable

The first implementations appeared in the 1960s
Wide acceptance in 2000s

47

Virtual Machine Types

Every interpreted language could be considered a VM

- Java VM, Dalvik (Android)

- Python (Cpython, Jython, IronPython), Ruby (Rubinus), Perl
(Parrot)

- .Net is a virtualization with the assumption that the byte code
will be translated into assembly upon execution and never
interpreted

- x86 code inside Chrome browser can run inside Native Client
(NaCl)

- Emscripten translates C/C++ into obscure Javascript that runs
very fast (asm.js project)

Here, we are interested in VMs at binary ISA and hardware

levels

- We will only consider VMs that export the same ISA as the

underlying hardware (no on-the-fly instruction translation)
48

Virtual Machine Terminology

« Virtual Machine Monitor (or Hypervisor)
- Software that supports VMs
- Much smaller than the tradition OS

» Tens of thousands of lines of code for VMM vs. many millions
for the OS

« Host

- Underlying hardware platform
« Guest (VM)
- Software (OS with applications) that run on the VM

49

Virtual Machine Overheads and Benefits

« VM comes with overhead

- CPU-bound codes experience very little slow-down

- 1/O-intensive workloads end up calling the OS kernel
frequently
« This results in system calls and privileged instruction execution
« Virtualization later has to emulate or protect these code sections

« Overhead depends on the speed of emulation/protection and is
often noticeable (cost I/O instruction surges compared with the
rest of instructions)

- 1/0O-bound applications spend most of the time in 1/0
« Overhead is large by small compared to speed of disks

« Benefits of VMs

- Software management: multiple OS's and versions
simultaneously

- Hardware management: multiplexing of server resources,

migration on failure, load balancing overloaded servers o

Requirements for Virtual Machines

Guest software should behave on a VM as it behaves on the
hardware (bare metal)

- Except for overhead and limitation on resources

Guest software should not be able to change resource
allocation directly

- Security and isolation

Hardware has to provide at least to modes: system (for the
host) and user (for the guest Vms)

- This is similar to virtual memory system privileges

Some instructions should only be available in system mode

- This is similar to virtual memory system calls and TLB
instructions

51

Impact of Virtual Machines on Virtual Memory

« Every guest OS maintains its own set of pages
- Virtualization introduces real memory
- Guest OS maps virtual address to real memory addresses
- VMM maps real memory addresses to physical address
- The mapping is done via shadow page table

« No actual table exists, no additional level of indirection

« Instead, changes to guest OS table occur through special
instructions that trap and transfer control to VMM

- TLBs in some RISC processors include Process ID
« This eliminates the need for TLB flush upon guest VM switch

52

Impact of Virtual Machines on Virtual Memory

« 1/0O subsystem has to be virtualized to allow sharing between
VM guests

« Diversity of /0 devices poses a challenge
- Supporting many device drivers introduces complexity into
VMM

- Generic drivers are often used to provide a common interface

« Physical disks are partitioned by the VMM and each partition
becomes a disk visible to a guest VM

« Network interface are share in time slices

- VMM keeps track of virtual network addresses and delivers
packets to the corresponding guest VM

53

