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Abstract—While successful implementations have
already been written for one-sided transformations
(e.g., QR, LU and Cholesky factorizations) on mul-
ticore architecture, getting high performance for
two-sided reductions (e.g., Hessenberg, tridiagonal
and bidiagonal reductions) is still an open and dif-
ficult research problem due to expensive memory-
bound operations occurring during the panel factor-
ization. The processor-memory speed gap continues
to widen, which has even further exacerbated the
problem. This paper focuses on an efficient imple-
mentation of the tridiagonal reduction, which is the
first algorithmic step toward computing the spectral
decomposition of a dense symmetric matrix. The
original matrix is translated into a tile layout i.e.,
a high performance data representation, which sub-
stantially enhances data locality. Following a two-
stage approach, the tile matrix is then transformed
into band tridiagonal form using compute inten-
sive kernels. The band form is further reduced to
the required tridiagonal form using a left-looking
bulge chasing technique to reduce memory traffic
and memory contention. A dependence translation
layer associated with a dynamic runtime system
allows for scheduling and overlapping tasks gener-
ated from both stages. The obtained tile tridiagonal
reduction significantly outperforms the state-of-the-
art numerical libraries (10X against multithreaded
LAPACK with optimized MKL BLAS and 2.5X against
the commercial numerical software Intel MKL) from
medium to large matrix sizes.
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I. INTRODUCTION

According to the last Top500 list from June
2010 [1], 99% of the fastest parallel systems in the
world were based on multicores. The first ranked
system, Jaguar from Oak Ridge National Labora-
tory, achieved an astonishing peak performance of
1.2 Pflop/s. This confronts the scientific software
community with both a daunting challenge and
a unique opportunity. The challenge arises from
the disturbing mismatch between the design of
systems based on this chip architecture – hun-
dreds of thousands of nodes, a million or more
powerful cores, reduced bandwidth and memory

available to cores – and the components of the
traditional software stack, such as numerical li-
braries, on which scientific applications have re-
lied for their accuracy and performance. For exam-
ple, the processor-memory speed gap will continue
to widen. The memory speed is clearly expected to
grow by an order of magnitude less compared to
the processor speed in the next few years [2].

This trend has already started to negatively im-
pact the performance of important and widely-
used numerical applications. Indeed, while suc-
cessful implementations have already been written
for compute intensive one-sided transformations
(e.g., QR, LU and Cholesky factorizations) on mul-
ticore architectures [3], [4], getting high perfor-
mance for two-sided reductions (e.g., Hessenberg,
tridiagonal and bidiagonal reductions) is still an
open and difficult research problem due to expen-
sive memory-bound operations occurring during
the panel factorization. Generally speaking, there
are basically two ways to alleviate bottlenecks re-
lated to memory bandwidth: (1) a software solu-
tion, which involves redesigning the algorithm to
cast most operations in Level 3 BLAS and hide the
slow memory accesses or (2) a hardware solution,
by relying on high bandwidth devices such as GPU
accelerators.

This paper proposes a software solution to over-
come the memory bottleneck of the tridiagonal
reduction (TRD), which is the pre-processing al-
gorithmic step toward computing the spectral de-
composition of a dense symmetric matrix [5], [6].
The common way of stating the problem is:

Ax = λx,

A ∈ IRn×n, x ∈ IRn, λ ∈ IR.

with A being a symmetric or Hermitian matrix (A =
AT or A = AH ), λ – an eigenvalue, and x the corre-
sponding eigenvector. The goal is to transform the
matrix A into a symmetric (or hermitian) tridiago-



nal matrix S:

S = Q × A × QT ,

A,Q,S ∈ IRn×n.

The necessity of calculating eigenval-
ues/eigenvectors emerges from various
computational science disciplines e.g., in
quantum chemistry [7], quantum mechanics [8],
quantum physics [9] and statistics when
computing the principal component analysis
of the symmetric covariance matrix. Moreover, the
tridiagonalisation step is the most time consuming
phase. It can reach more than 90% of the elapsed
time when calculating the eigenvalues and roughly
50% when both eigenvalues and eigenvectors
are to be computed. In our tridiagonalisation
implementation, the original matrix is translated
into a tile layout i.e., a high performance data
representation, which enhances memory accesses
and data locality by appropriately fitting the core
small caches. Following a two-stage approach,
the tile matrix is then transformed into band
tridiagonal form using compute intensive kernels.
The band form is further reduced to the required
tridiagonal form using a new bulge chasing
technique with a left-looking variant to reduce
memory traffic and memory contention. This
second stage uses non-tile algorithm on top
of tile layout storage. An original dependence
translation layer (DTL) allows to map the access
pattern of the second stage onto tile layout. The
dynamic runtime system SMPSs [10] enables to
schedule and overlap tasks generated from both
stages. The obtained tile tridiagonal reduction
significantly outperforms the state-of-the-art
numerical libraries from medium to large matrix
sizes.

The remainder of this paper is organized as
follows: Section II gives a detailed overview of pre-
vious projects in this area. Section III lays out
the new contributions of this paper. Section IV
recalls the tridiagonal reduction approach used in
the state-of-the-art numerical libraries. Section V
describes the two-stage approach and Section VI
presents some implementation details. Section VII
presents performance results of the overall algo-
rithm. Also, comparison tests are run on shared-
memory architectures against the corresponding
routines from LAPACK [11], ScaLAPACK [12], [13],
SBR Toolbox [14] and the vendor library MKL [15].
Finally, Section VIII summarizes the results of this
paper and describes the ongoing work.

II. RELATED WORK

The two-stage approach for performing two-
sided reductions is the de facto methodology in
order to cast slow memory operations into fast
compute intensive ones. Bischof et al. [14] de-
veloped a toolbox called Successive Band Reduc-
tions (SBR) to reduce a symmetric dense matrix to
tridiagonal form, required to solve the symmetric
eigenvalue problem (SEVP). This toolbox applies
two-sided Householder transformations to the ma-
trix and successively reduces the bandwidth until
the tridiagonal form is reached. SBR relies heav-
ily on multithreaded optimized BLAS to achieve
parallel performance, which follows the expensive
fork-join paradigm. More recently, Davis and Ra-
jamanickam [16] implemented a similar toolbox
called PIRO BAND, which reduces symmetric and
non-symmetric band matrices to tridiagonal and
bidiagonal forms needed for the SEVP and the
singular value decomposition, respectively. The
orthogonal transformations are based on pipelined
plane rotations, which improves the overall time
to solution compared to SBR. Finally, Kågström et
al. [17] described a two-stage approach in the con-
text of Hessenberg-Triangular reduction for the
generalized eigenvalue problem for dense matrix.
The matrix is first reduced to band Hessenberg
by applying accumulated Givens rotations within
high performant kernels. The extra off-diagonal
elements are then annihilated and chased down
using the standard bulge chasing technique.

With the emergence of high bandwidth and high
efficient devices such as GPUs, accelerating by
orders of magnitude memory-bound and compute-
bound operations becomes accessible. Tomov and
Dongarra [18] presented a novel Hessenberg re-
duction algorithm, which takes advantage of the
high bandwidth of the GPU by off-loading the
expensive level 2 BLAS operations of the panel fac-
torization to the device. The same approach is also
applicable to the other two-sided transformations,
i.e., the tridiagonal and bidiagonal reductions. The
opposite was done by Bientinesi et al. [19] who
accelerated the first stage (the reduction to band
tridiagonal) of the SBR toolbox, which is the most
compute intensive, by off-loading the compute-
bound kernels to the GPU. The computation of the
second stage (reduction to tridiagonal form) still
remains on the host though.

III. CONTRIBUTIONS

This section highlights the main contributions
of our work.



• We have created a set of new Level 3 BLAS
kernels that achieve high performance (see
Section V-A). These efficient kernels are used
during the first stage while reducing the tile
matrix to band tridiagonal form. They are also
reused to some extent during the second stage
by proper recasting in terms of Level 2 BLAS
kernels (see Section V-B).

• We have also devised a novel “bulge chas-
ing” implementation for the second stage of
the tridiagonal reduction. It works on top of
either standard column-major layout or the
standard tile layout when used in combination
with the Dependence Translation Layer (DTL)
(see Section VI-A).

• The memory bottleneck seen in the second
stage, and expressed by previous approaches
in Section II, is alleviated by implementing a
novel left-looking bulge chasing procedure (on
top of tile layout) rather than using a hardware
solution (see Section VI-D). This allows us to
drastically improve the data locality and to de-
crease the memory traffic within the multicore
system.

• Representing algorithms using fine granular-
ity tiles creates a tremendous number of tasks
that can be dynamically executed in parallel in
an out-of-order fashion. The common, strong
synchronization point between both stages is
then dramatically weakened. The fine granu-
larity tasks are simply scheduled as soon as
their data dependencies are satisfied and this
is ensured through the DTL. As a result, the
tasks from both stages can potentially overlap
and our experiments show that they in fact do
so. As a consequence, the upper left corner of
the matrix attains its final tridiagonal form,
while the lower right corner of the matrix is
still being worked on by the first stage of the
reduction.

IV. BACKGROUND

This section describes the evolution of the al-
gorithmic approaches in the dense linear algebra
area. From block to tile algorithms, the state-of-
the-art libraries had to undergo, at each time, a
major redesign to better suit the new emerging
architectures.

A. Block Algorithms

The LAPACK library provides a broad set of
linear algebra operations aimed at achieving high
performance on systems equipped with memory

hierarchies. The algorithms implemented in LA-
PACK leverage the idea of blocking to limit the
amount of bus traffic in favor of a high data reuse
that is present in the higher level caches, which
are also the fastest ones. The idea of blocking
revolves around an important property of Level-
3 BLAS operations (Matrix-Matrix multiplication),
the so called surface-to-volume property, which
states that (θ(n3)) floating point operations are per-
formed on (θ(n2)) data. Because of this property,
Level-3 BLAS operations can be implemented in
such a way that data movement is limited, and
reuse of data in the cache is maximized. Block
algorithms consist of recasting linear algebra al-
gorithms in a way that only a negligible part of
computations is done in Level-2 BLAS operations
(Matrix-Vector multiplication, where no data reuse
possible) while most is done in Level-3 BLAS. Most
of these algorithms can be described as the repe-
tition of two fundamental steps:

• Panel factorization : depending of the linear
algebra operation that has to be performed, a
number of transformations are computed for
a small portion of the matrix (the so called
panel). These transformations, computed by
means of Level-2 BLAS operations, can be
accumulated.

• Trailing submatrix update : in this step, all the
transformations that have been accumulated
during the panel factorization step can be ap-
plied at once to the rest of the matrix (i.e., the
trailing submatrix) by means of Level-3 BLAS
operations.

Although the panel factorization can be identi-
fied as a sequential execution that represents a
small fraction of the total number of performed
FLOPS (θ(n2)) when compared with the total per-
formed FLOPS (θ(n3)), the scalability of block fac-
torizations is limited on a multicore system. In-
deed, the panel factorization is rich in Level-2
BLAS operations that cannot be efficiently paral-
lelized on currently available shared memory ma-
chines. Moreover, the parallelism is only exploited
at the level of the BLAS routines.

This is even more critical for algorithms like two-
sided transformations (namely Hessenberg, tridi-
agonal and bidiagonal reductions) where the panel
computation is probably the most expensive one
due to Level-2 BLAS operations accessing the en-
tire matrix. As presented in LAPACK, those types
of reductions follow a one-stage approach where
the reduced form is obtained without interme-
diate steps. Later, the SBR toolkit introduced a



two-stage approach where the matrix is first re-
duced to a band form during a compute intensive
phase and eventually to the final required form
through a memory-bound phase. Although the
performance numbers show some improvement
(see Section VII), they are still far from the peak
of the system.

All in all, block algorithms comply an inefficient
fork-join model, since the execution flow of a block
factorization represents a sequence of sequential
operations (panel factorizations) interleaved with
parallel ones (updates of the trailing submatrices).

B. Tile Algorithms

A solution to this fork-join bottleneck in block
algorithms has been presented in [20]–[24]. The
approach consists of breaking the panel factor-
ization and trailing submatrix update steps into
smaller tasks that operate on tiles i.e., a set of b
contiguous columns where b is the block size (see
Figure 1), in order to fit the small core caches. The
algorithm can then be represented as a Directed
Acyclic Graph (DAG) where nodes represent tasks,
either panel factorization or update of a block-
column, and edges represent dependencies among
them.

Figure 1. Translation from LAPACK Layout to Tile Data Layout

The execution of the algorithm is performed by
asynchronously scheduling the tasks in a way
such that dependencies are not violated. This
asynchronous scheduling results in an out-of-
order execution where slow, sequential tasks are
hidden behind parallel ones. It is possible to
achieve close to system peak performance for
one-sided factorizations, i.e., Cholesky, QR and
LU [25].

However, the integration of the new tile layout
makes the redesign of the two-sided reductions
from LAPACK very challenging [26]. As explained
in the next section, an ambitious way to over-
come this difficulty is to implement the two-stage
approach for the tridiagonal reduction using tile
algorithms.

V. A TWO-STAGE TRIDIAGONAL REDUCTION USING

TILE ALGORITHMS

A two-stage approach has demonstrated some
potential in computing two-sided transformations
in the context of block algorithms, but not enough
to adequately address multicore architecture by
itself. This section explains the challenges of ex-
ecuting the two-stage tridiagonal reduction on top
of tile layout instead, where fine granularity and
high degree parallelism can bring to the fore new
opportunities to achieve high performance.

A. The First Stage: Reduction to Band Tridiagonal

The idea of this first stage is straightforward.
The original symmetric matrix is reduced to a
temporary band tridiagonal form consisting of b
off-diagonals, with b the tile size.

This stage is highly compute-intensive, relying
on new optimized kernels as well as kernels com-
ing from the tile QR reduction [21].

The descriptions of the tile QR kernels are as
follow:

• DGEQRT computes the QR factorization of a
sub-diagonal tile. This kernel generates reflec-
tors in the lower part of the sub-diagonal tile
(Figure 2(a)).

• DLARFB takes as input the block of reflec-
tors computed from DGEQRT and updates
the corresponding tile row (left update, see
Figure 2(b)) and column (right update, see
Figure 2(c)).

• DTSQRT stacks an upper triangular tile on top
of a square tile and computes the QR factor-
ization. It also generates reflectors and stores
them in place of the square tile (Figure 2(d)).

• DSSRFB applies the square block of reflec-
tors from DTSQRT to the two tile rows (left
updates, see Figure 2(e)) and columns (right
updates, see Figure 2(k)).

DGEQRT and DTSQRT handle basically the panel
factorization and DLARFB and DSSRFB apply
the generated reflectors to the trailing submatrix.
More details about those kernels can be found in
the literature [21].

The newly implemented kernels appropriately
handle the symmetric structure of the matrix.
They are described below:

• DSSRFBLR and DSSRFBLRT kernels apply
from the left the block of reflectors calculated
in DTSQRT by rigorously taking into account
the symmetric structure of the matrix (Fig-
ure 2(h) and Figures 2(f)-2(g), respectively).



• DSSRFBRL and DSSRFBRLT kernels apply
from the right the block of reflectors calculated
in DTSQRT by also taking into account the
symmetric structure of the matrix (Figure 2(i)
and Figure 2(j), respectively).

Those special kernels need temporary buffers to
handle the symmetry accordingly and to ensure
numerical correctness (Atmp1, Atmp2 and Atmp3)
as shown in the overall band TRD algorithm for
an NT-by-NT tile matrix (Algorithm 1). The tile

Algorithm 1 Tile Band TRD Algorithm with
Householder Reflectors.
1: for step = 1, 2 to NT−1 do
2: DGEQRT(Astep+1,step)
3: {Left Updates}
4: DLARFB(Astep+1,step, Astep+1,step+1)
5: for i = step+1 to NT do
6: {Right Updates}
7: DLARFB(Astep+1,step, Ai,step+1)
8: end for
9: for k = step+2 to NT do

10: DTSQRT(Astep+1,step, Ak,step)
11: {Left Updates}
12: for j = step+1 to k do
13: if ( j == step+1) then
14: DSSRFB(Astep+1, j, Ak, j, Atmp1)
15: else if ( j == k) then
16: DSSRFBLR(Atmp1, Ak, j, Atmp2)
17: else
18: DSSRFBLRT(A j,step+1, Ak, j)
19: end if
20: end for
21: {Right Updates}
22: for m = step+1 to NT do
23: if (m == step+1) then
24: DSSRFB(Atmp2, Atmp3, Ak,m)
25: else if (m == k) then
26: DSSRFBRL(Atmp3, Ak,m)
27: else if (m > k) then
28: DSSRFBRLT(Am,step+1, Ak,m)
29: end if
30: end for
31: end for
32: end for

band TRD algorithm (two-sided) can be even better
characterized conceptually. It is similar to some
extent to the tile QR factorization (one-sided). The
only difference is that, as soon as the left updates
hit the diagonal tiles, they are reflected by a 90
degree angle in order to avoid touching the upper
matrix. Then, the reflected updates are actually
the right updates and they continue applying the

block of reflectors until the bottom of the matrix is
reached. Those reflected updates can be seen from
Figure 2(f) to Figure 2(j).

B. The Second Stage: Reduction to Tridiagonal us-
ing the Bulge Chasing Technique

This second stage takes as input a band tridi-
agonal matrix in LAPACK layout (column-major)
and reduces it to the required and final tridiag-
onal form. The procedure used in this stage is
the standard bulge chasing. It consists in annihi-
lating the extra elements column-by-column. For
each column annihilated, there is a bulge or a
block of fill-in elements created, which needs to
be chased down toward the bottom right corner
of the matrix. This is what is called a sweep. So,
if n is the matrix size, there will be n− 2 sweeps.
These Level 2 BLAS kernels are actually derived
from the high performance kernels described in
Section V-A. The Level 3 BLAS kernels have been
properly unrolled in terms of Level 2 BLAS kernels
for better performance, given that the operations
are really performed on a small amount of data.
The general bulge chasing procedure is presented
in Algorithm 2.

Algorithm 2 Standard Bulge Chasing Algorithm
of b extra diagonals.
1: for k = 1, 2 to N−2 do
2: {Column annihilation}
3: DGEQR2(Bk+1:k+min(b,n−k), k)
4: {Left and right updates on a diagonal block}
5: DSYRF(Bk+1:k+min(b,n−k), k+1:k+min(b,n−k))
6: {Chasing the bulge}
7: for i = k+1 to N with i =+ b do
8: if i+b == n then
9: {Right update for clean-up}

10: DLARFX(Bmin(i+b,n), i:min(i+b,n)−1)
11: end if
12: if min(i+b,n) < (n−1) ||min(i+2∗b,n) < (n−

1) then
13: {Column annihilation within the sweep}
14: DGEQR3(Bmin(i+b,n):min(i+2∗b,n)−1, i:min(i+b,n)−1)
15: {Left and right updates on a diagonal

block}
16: DSYRF(Bmin(i+b,n):min(i+2∗b,n)−1, min(i+b,n):min(i+2∗b,n)−1)
17: end if
18: end for
19: end for

We recall the four kernels involved in the stan-
dard bulge chasing algorithm:
• DGEQR2 generates a single Householder re-

flector.



(a) DGEQRT (Panel). (b) DLARFB (Left up-
date).

(c) DLARFB (Right
update).

(d) DTSQRT (Panel).

(e) DSSRFB (Left up-
date).

(f) DSSRFBLRT (Re-
flected update).

(g) DSSRFBLRT (Re-
flected update).

(h) DSSRFBLR
(Reflected update).

(i) DSSRFBRL
(Reflected update).

(j) DSSRFBRLT (Re-
flected update).

(k) DSSRFB (Right
update).

Figure 2. Execution Breakdown of the Tile TRD Band Re-
duction at step 3 for a 10-by-10 tile matrix. The light blue
part corresponds to the matrix already factorized in band
tridiagonal form. The gray part is the untouched area of the
original matrix

• DSYRF applies the reflector computed in
DGEQR2 to a symmetric diagonal block from
the left and right.

• DGEQR3 contains three successive computa-
tion steps executed on a data block, which
could physically span on four tiles at most. It
applies the reflectors calculated in DGEQR2
from the right. It then annihilates the first
column of the created bulge and finally applies
the new reflectors to the left.

• DLARFX applies the reflectors computed in
DGEQR3 from the right during the clean-up
phase.

There are mainly two critical issues with this
technique that need to be addressed. First, there
is an existing mismatch between the original lay-
out (i.e., LAPACK) and the tile layout. Second,
the operations involved are completely memory-
bound. This engenders significant overheads due
to high memory traffic and will eventually occupy
the overwhelm bus prohibiting any parallel execu-
tion [26].

In the following section, we explain how those
issues can be relieved.

VI. IMPLEMENTATION DETAILS

A. Dependence Translation Layer

The first stage of our tridiagonal reduction can
readily use standard tile layout, with the first tile
occupying the upper left corner of the matrix;
the required computational kernels can be reused
from the one-sided factorizations. On the other
hand, the second stage cannot be easily formu-
lated to obey the standard tile layout; it has a
very particular access pattern that most of the
time spans the boundaries of the standard tile
layout. Figure 3 shows which portion of the matrix
is accessed by each of the 25 tasks of the second
stage of reduction of a 9× 9 matrix with tile size
equal 3. The very first operation of the second
step is the first column annihilation; the accessed
portion of the matrix is marked with a bright red
rectangle of dimension 3×1 in the upper left corner
of the Figure. This first task already spans two
tiles. The next task accesses a portion of the matrix
that spans 4 tiles as marked by a brown square of
size 3× 3. There are some tasks that access only
two tiles or even a single tile. Such irregularity of
data accesses would be very hard to accommodate
programmatically in a standard tile layout, or any
tile layout for that matter, as the boundaries of
the accessed portions of the matrix move by one
at each iteration of the second stage. One solution



Figure 3. Graphical representation of portions of the matrix
accessed by the consecutive task of the second stage of the
reduction. The yellow lines represent division of the matrix into
individual entries and the long black lines delineate matrix tiles
in the first stage of the tridiagonal reduction and submatrices
accessed in the second stage. The red tasks represent the
DGEQR2 kernel, the brown tasks identify the DSYRF kernel,
the green tasks shows the DGEQR3 kernels and finally, the
blue tasks are the DLARFX kernels.

could be to translate the matrix from tile stor-
age to a standard column-major storage (as it is
used by LAPACK and Fortran) but then we face
the performance penalty of translation and the
hardship of parallelizing the code by hand, as the
current DAG schedulers only address tile storage
format. We chose to combine the advantages of
both approaches (use our existing tile formulation
on top of column-major storage and take advan-
tage of automatic parallelization) by introducing a
Dependence Translation Layer (DTL).

The translation layer bridges the column-major
layout with the standard tile storage and creates
proper dependencies that could be fed to either the
SMPSs or QUARK runtimes. Our original code that
works on top of column-major storage remains
unchanged except for names of the functions that
implement the computational kernels; instead of
the kernels, wrapper functions are called, which
perform the translation. Each wrapper has two

parts. The first part extracts the information as
to which and what portions of tiles are being
accessed while the second part schedules the ap-
propriate kernel for execution by the DAG runtime
scheduler. The first part of each wrapper in the
translation layer is common to all kernels and
could be reused throughout the code – a win from
the software engineering stand point. The second
part of each wrapper is unique and requires man-
ual intervention – a small price to pay considering
the daunting task of rewriting the whole second
stage.

The visualization of the second stage tasks from
Figure 3 is a very useful tool in developing the DTL.
Let’s use 9× 9 matrix from the upper left corner
of the Figure. It shows the annihilation of the
first column of the band tridiagonal form; it spans
two tiles. The DTL will take this information and
schedule for execution a kernel that can generate
a Householder reflector suitable for annihilation
split across tiles. The DTL will also mark the two
tiles as being read and overwritten in order for the
runtime to correctly account for data dependen-
cies and preserve the proper order of execution.

B. Tile Bulge Chasing Procedure

After integrating the DTL framework into the
second stage, the original bulge chasing kernels
presented in Section V-B need to be broken into
smaller successive tasks to match the area span-
ning across the physical tiles. This is part of the
second step explained in the Section VI-A. As
shown in Figure 3, there are different cases to
consider depending on this area, and for each
case, a particular kernel is required.

Below are some details about the new kernels:
• DGEQR2 (red in Figure 3) becomes DTSQR2

when the single column to be annihilated re-
sides on two tiles and stays as is if the column
fits in a single tile.

• DSYRF (brown in Figure 3) applies the re-
flectors computed in DGEQR2 to a symmetric
diagonal tile from the left and right, if the
targeted area fits in a single tile. Also, DSYRF
applies the reflectors computed in DTSQR2 to
a symmetric diagonal tile from the left and
right if the region extends across four tiles.

• DGEQR3 (green in Figure 3) applies suc-
cessively from the right the reflectors cal-
culated in DGEQR2 or DTSQR2, depend-
ing on whether the area fits in one or
two/four tiles, respectively. It then annihi-
lates the first column of the bulge by calling
DGEQR2/DTSQR2 and applies those freshly



created reflectors to the left within the tile by
executing DLARFX or DSSRFX, respectively.

• DLARFX (cyan in Figure 3) applies the reflec-
tors from DTSQR2, as it always spans across
two tiles.

The tile bulge chasing technique makes the
DAGs for two-sided factorizations much more
complex with a number of nodes/tasks growing
exponentially with the matrix size. The next sec-
tion describes SMPSs framework, a runtime sys-
tem for task scheduling across homogeneous mul-
ticore architectures.

C. Runtime System: SMPSs/QUARK

1:1 DGEQRT

DTSQRT DLARFB

DLARFB

DLARFB2:3

clean1DSSRFB

DSSRFBLR

DSSRFBRLT

DSSRFBRL

3:1

DGEQR2

clean2

4:2

DGEQRT DSYRF

DLARFB

5:2

6:1

7:3

clean1

DLARFB

8:2

9:1

DGEQR3

10:1

11:1

Figure 4. DAG for tridiagonal reduction: yellow nodes belong
to the second stage and the blue node marks the beginning of
the second stage. The ovals on the left denote the step and the
number of tasks that can be executed in parallel in that step.

DAGs have a long history [27] of expressing
parallelism and task dependencies in distributed
systems. Previously, they have often been used in
grids and peer-to-peer systems to schedule large
grain tasks, mostly from a central coordinator
organizing the different task executions and data
movements. A whole taxonomy of DAGs have been
used in grid environments [28], [29].

More recently, many projects have proposed to
use them as an approach to address the challenge
of harnessing the computing potential of multi-
core computers, especially in the linear algebra
field. It has been demonstrated that DAGs en-
able the scheduling of tasks for tile algorithms on
multi-core CPUs [30], [31], reaching performances
inaccessible to traditional approaches for the same
problem sizes. Such an approach can also be
used to address hybrid architectures [32], with
computers augmented with accelerators such as
GPUs. Using a task description language to define
codelets enables the execution of same tasks on
different hardware [33], and DAGs may be used to
schedule tasks on heterogeneous computers [34].

There are at least three approaches to building
and managing the DAG during the execution. (1)
First read a concise representation of the DAG
(in XML) and unroll it in memory before schedul-
ing it [29]. (2) Modify the sequential code with
pragmas to isolate tasks that will be run as an
atomic entity and run the sequential code to dis-
cover the DAG [10], [32], [35]. Optionally, these
execution engines use bounded buffers of tasks
to limit the impact of the unrolling operation in
memory. (3) The third approach consists of using
the concise representation of the DAG in mem-
ory, to avoid most of the impact of unrolling it
at runtime. Using structures like Parameterized
Task Graph (PTG) [36], the memory used for DAG
representation is linear in the number of task
types and totally independent of the total number
of tasks.

Clearly, using a DAG for scientific computations
is not new. The novelty of our approach lies in the
use of DAG scheduling for a two-sided factoriza-
tion. A DAG for a small 3× 3 matrix is shown in
Figure 4. Because we apply a DAG for both stages
of the tridiagonal reduction, the nodes in the DAG
do not represent tasks of equal computational
load. The white and red nodes represent the first
stage, the reduction to band tridiagonal form, and
are rich in Level 3 BLAS operations; they operate
close to peak performance of the hardware. The
blue node begins the second stage, the reduction
to tridiagonal form, which is carried out by the
yellow nodes; they are by far bound by the avail-
able memory bandwidth. This presents a potential
challenge for DAG schedulers; the first stage is,
to an extent, oblivious to data locality, while for
the second stage data locality is of the utmost
importance. We conducted our tests with both
SMPSs and QUARK (part of PLASMA) schedulers
and found that indeed data locality is the most



crucial aspect that can help performance of the
reduction.

Figure 5. Overlapping between the two stages: the dark gray
area remain untouched since the matrix is symmetric. The
red elements belong to the final tridiagonal structure. The
green band still needs to be reduced after chasing down the
blue bulges (second stage tasks). The light gray area is the
unreduced part (first stage tasks).

By overlapping the execution of the first and
second stage of the reduction, we are able to have
about 10% of the matrix reduced to tridiagonal
form by the time the first stage finishes. The over-
lap may be observed in Figure 4, as the second
stage begins with a blue node at step 5 and the first
stage doesn’t end until step 10. Figure 5 presents
another way to show how the overlapping actually
happens. The Figure represents the physical state
of the matrix at a given time during the reduc-
tion. The upper triangular (dark gray) remains
untouched due to the symmetric structure of the
matrix. The top left corner of the matrix (red) has
already reached the tridiagonal form. The middle
of the matrix contains the band form (green) which
will eventually be reduced after chasing down the
fill-in elements (blue). The bottom right of the
matrix (light gray) is still unreduced. The difficult
part of overlapping the stages is formulating the
second stage reduction in tile form. The execution
DAG engines perform the dependence tracking
and parallel scheduling that lead to the overlap.

D. Looking Variants

One thing that a DAG of tasks does not convey
is which variant of a given algorithm it represents:
left-looking or right-looking [37]. The DAG is the
same for either variant and it is the order of visiting
the DAG’s nodes during execution that determines
which variant is used. In essence, it is up to the
scheduling engine to choose the node visitation
order and thus pick the variant. Left-looking vari-
ants of many linear algebra algorithms are known
to possess better data locality properties which is
essential for the second stage of the tridiagonal

reduction. However, it is conceptually much easier
to code the right-looking variant. First annihilate
the first column and chase the resulting fill-in
(bulge) down to the bottom right corner of the
matrix, then proceed with the second column and
so on. Naturally then, we started our experiments
with the right-looking variant and had hoped for
the DAG scheduling runtime to help in introducing
data locality. Note that locality-aware scheduling
requires looking ahead in the stream of tasks and
picking those for execution whose data is still in
cache – the right-looking variant discards data
from cache quickly and moves down to the bottom
right of the matrix without any reuse. By means
of profiling and tracing, we were able to observe
inefficiency in scheduling; the tasks were taking
longer than expected, which indicated to us a
higher rate of cache misses resulting from the
lack of locality. We concluded that the insertion
order of tasks into the DAG scheduling engine is
important and thus proceeded with implementing
the left-looking variant of the second stage of the
reduction. Due to complicated data dependencies,
deriving the left-looking variant from the right-
looking one is not as straightforward as inter-
changing the loops. However, from an understand-
ing of the algorithm and by looking at Figure 3,
we derive the left-looking variant by changing the
function that implements the right-looking vari-
ant into a generator, i.e., a function that returns
multiple values. Our generator returns tasks to
be scheduled by the DAG runtime, and we keep a
number of generators active as there are columns
to annihilate. The generator for annihilation of
column k+1 is allowed to produce a task if the gen-
erator for column k is at least two steps behind it in
the number of tasks it has produced. This simple
rule allowed for a productive implementation of the
left-looking variant and resulted in performance
improvement, as shown later in Section VII-D.

VII. EXPERIMENTAL RESULTS

A. Hardware Description

The experiments have been performed on a
quad-socket quad-core machine based on an Intel
Xeon EMT64 E7340 processor operating at 2.4
GHz. The theoretical peak is equal to 9.6 Gflop/s
per core or 153.2 Gflop/s for the whole node, which
is composed of 16 cores. There are two levels of
cache. The Level 1 cache, local to each core, is
divided into 32 KB of instruction cache and 32
KiB of data cache. Each quad-core processor is
composed of two dual-core Core2 architectures,
the Level 2 cache has 2× 4 MB per socket (each



dual-core shares 4 MB). The effective bus speed
is 1066 MHz per socket leading to a bandwidth of
8.5 GB/s (per socket). The machine was running
Linux 2.6.25 and provided Intel Compilers 11.0
together with the MKL 10.1 vendor library. All the
experiments presented below focus on asymptotic
performance and were conducted on the maxi-
mum amount of cores available on the machine,
i.e., 16 cores.

B. Software Description

There is a number of software packages that
implement tridiagonal reduction. For comparison
we used as many as we were aware of, and here
we briefly describe each one in turn.

LAPACK [11] is a library of Fortran 77 subrou-
tines for solving those most commonly occurring
problems in dense matrix computations. It has
been designed to be efficient on a wide range of
modern high-performance computers. The name
LAPACK is an acronym for Linear Algebra PACK-
age. LAPACK can solve systems of linear equa-
tions, linear least squares problems, eigenvalue
problems and singular value problems. LAPACK
can also handle many associated computations,
such as matrix factorizations or estimating condi-
tion numbers.

ScaLAPACK [12], [13] is a library of high-
performance linear algebra routines for
distributed-memory message-passing MIMD
computers and networks of workstations
supporting PVM [38] and/or MPI [39]–[42]. It
is a continuation of the LAPACK project, which
designed and produced analogous software
for workstations, vector supercomputers, and
shared-memory parallel computers. The other
extension to LAPACK is that ScaLAPACK uses a
two-dimensional block cyclic distribution, which
improves the memory locality.

MKL (Math Kernel Library) [15] is commercial
software from Intel that is a highly optimized pro-
gramming library. It includes a comprehensive set
of mathematical routines implemented to run well
on multicore processors. In particular, MKL in-
cludes a LAPACK-equivalent interface that allows
for easy swapping the reference LAPACK imple-
mentation for the MKL one by simply changing
the linking parameters. By the same token, the
SBR Toolbox interface is also available in MKL.
We tested both versions 10 and 11 of MKL and
found negligible difference in performance of the
routines relevant for this document.

C. Tuning

The performance of tile algorithms strongly de-
pends on tunable execution parameters of the
outer and the inner blocking sizes [25]. In the first
stage of the tridiagonal reduction, the outer block
size, nb, trades off parallelization granularity and
scheduling flexibility for single core utilization. The
inner block size, ib, trades off memory load with
extra flops due to redundant calculations. The sec-
ond stage requires tuning of only the outer block
size – nb. Large values of nb tend to decrease op-
portunities for increase in data locality. And small
values of nb increase the overhead due to kernel
startup cost. Both stages are connected because
they both use the same data layout, which deter-
mines the value of nb. This creates an unusually
large set of constraints on the optimal value of
nb. We have established experimentally the optimal
range for nb values to be between 100 and 200 with
only slight changes in the resulting performance.
As exhaustive tuning is beyond the scope of this
paper, we simply chose value 100 for nb and 25 for
ib.

D. Performance

Figure 6 draws the performance comparisons
between the right and left looking variants. As
described in Section VI-D, the right looking variant
requires the traverse of the whole diagonal band of
the matrix to annihilate a single column. In other
words, the whole matrix has to be loaded in cache
to annihilate a single column, which can not be an
option.

On the contrary, the left looking variant allows
for making sure all subsequent updates from col-
umn annihilations are applied at once to an area
around the diagonal before sliding to the next area.
This results in improved cache reuse, which is
paramount when it comes to enhancing memory-
bound operations. And in terms of performance
numbers, this is expressed by a gain of 10% to 15%
compared to the right looking variant.

Figure 7 shows the performance comparisons
of the tile TRD left looking variant against
the state-of-the-art numerical libraries.
LAPACK/ScaLAPACK TRD and MKL TRD use
a one-stage approach to reduce a general dense
matrix to tridiagonal form. The standard SBR TRD
implements a two-stage approach, which requires
the change of the layout in-between, going from
column-major to band layout. MKL SBR TRD is
the vendor optimized version of the SBR TRD.

The performance for LAPACK TRD is very low,
around 2.5 Gflop/s. This again proves the scala-
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Figure 6. Right Looking and Left Looking variants of the Tile
TRD.

bility limitations of block algorithms on multicore
architectures. Thanks to a better memory locality,
ScaLAPACK TRD performs better for small sizes
but then the performance does not scale as the
matrix size increases. MKL TRD presents the same
performance behavior. The two-stage approach
implemented in SBR TRD only scales for small
matrix sizes, similar to the one-stage approach.
There are mainly three reasons: (1) the first stage
follows the strategies of block algorithms with par-
allelism occurring at the level of the BLAS, (2) the
transformation of the layout between both stages
and (3) the right looking variant of the bulge chas-
ing procedure. In particular, (3) really becomes a
bottleneck when the matrix gets larger. However,
the vendor optimized MKL SBR TRD scales for
large matrix sizes. The second stage has been most
probably enhanced.

Our tile LL TRD approach is clearly not suited
for small matrix sizes. And this can be mainly
explained by the overhead of chasing the bulge
(second stage) on top of tile layout. The real gain
over most of the other libraries happens around
the crossover point n = 6000, where the first stage
exhibits very good performance thanks to the tile
algorithm paradigm. Our approach continues to
scale as the matrix gets larger thanks to the left
looking variant of the second stage. The possible
overlap between both stages (up to 10%) also helps
toward that direction. For n = 16000, the tile LL
TRD runs roughly at 28 Gflop/s, which is 10 times
faster than multithreaded LAPACK with optimized
MKL BLAS and 2.5 times faster than the vendor
optimized MKL SBR TRD.

Although the system has only 16 cores, we envi-
sion this two-stage approach to be very scalable as
the number of cores increases because it is really
optimized for memory accesses.
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Figure 7. Tile TRD performance comparisons on Intel Xeon
2.4GHz with MKL Blas 10.1

VIII. SUMMARY

This paper describes a novel implementation,
which enables efficient reduction of a symmetric
matrix to the tridiagonal form – the first algo-
rithmic step toward computing one of the most
important linear algebra algorithms i.e., the spec-
tral decomposition of a dense symmetric matrix.
Using a two-stag approach, this implementation
is particularly well suited for homogeneous mul-
ticore architectures. It relies on the tile formula-
tion of the reduction algorithm and a combination
of performance enhancing techniques: (1) a left-
looking variant of the bulge chasing procedure
that enhances data locality and reduces memory
traffic, (2) a dependence translation layer that
eases the burden of data layout translation or
reprogramming of existing code, and (3) a dynamic
runtime system which allows for scheduling and
overlapping tasks generated from both reduction
stages. The combined effect of these factors allows
our implementation to exhibit weak scaling (cur-
rently hard to achieve) and vastly outperforms
the state-of-the-art numerical libraries (an up to
10-fold improvement) for medium to large matrix
sizes. Due to the memory-bound nature of the
algorithm, it is noteworthy to mention that the
overall performance achieved still represents only
a relatively small fraction of the theoretical peak
of the machine (20%).



The authors are currently investigating how the
Q matrix, which contains all the accumulated
transformations from both stages, may be effi-
ciently computed. This is a relevant issue because
the Q matrix is required during the back transfor-
mation step that is performed in the case when
the eigenvectors are needed.

Given the significance of the eigenvalue prob-
lem to various areas of science, a straightforward
extension to this work will be the generalized
symmetric eigenvalue problem. To accommodate
this, another stage will have to be implemented,
which necessitates the integration of the Cholesky
factorization. This new stage can be seen as a pre-
processing step to the two-stage approach pre-
sented in this paper. These three stages can then
be overlapped thanks to the dependence transla-
tion layer and the dynamic runtime system.

Finally, the authors are also looking at how
this work can be extended to address the Hes-
senberg and bidiagonal reductions. Preliminary
results have already been obtained for the first
stage of each of the reductions [43].

REFERENCES

[1] H. W. Meuer, E. Strohmaier, J. J.
Dongarra, and H. D. Simon, TOP500
Supercomputer Sites, 35th ed., June 2010,
(The report can be downloaded from
http://www.netlib.org/benchmark/top500.html).

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J.
Gebis, P. Husbands, K. Keutzer, D. A. Patterson,
W. L. Plishker, J. Shalf, S. W. Williams, and K. A.
Yelick, “The Landscape of Parallel Computing Re-
search: A View from Berkeley,” Electrical Engineer-
ing and Computer Sciences University of Califor-
nia at Berkeley,, Tech. Rep. Technical Report No.
UCB/EECS-2006-183, December 18 2006.

[3] PLASMA Users’ Guide, Parallel Linear Algebra Soft-
ware for Multicore Archtectures, Version 2.2, Uni-
versity of Tennessee, November 2009.

[4] “The FLAME project,” April 2010,
http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage.

[5] G. Golub and C. Van Loan, Matrix Computations,
3rd ed. Baltimore, MD: Johns Hopkins University
Press, 1996.

[6] L. N. Trefethen and D. Bau, Numerical Lin-
ear Algebra. Philadelphia, PA: SIAM, 1997,
http://www.siam.org/books/OT50/Index.htm.
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