
Mixed-precision scientific computing with Tensor
Cores on NVIDIA GPUs: Exceeding the performance
characteristics of single precision while maintaining
numerical accuracy
Harun Bayraktar, Director of Engineering

HPC on Heterogenous Hardware (H3) Workshop @ ISC23 – May 2023

• Part 1: Heterogeneous Computing

• Part 2: Mixed-Precision scientific computing with Tensor Cores

• Closing Remarks

Agenda

Part 1:
Heterogeneous Computing

Heterogeneous Hardware
Specialization of hardware components

• heterogeneous
• adjective US: /ˌhet̬.ə.roʊˈdʒiː.ni.əs/ UK: /ˌhet.ər.əˈdʒiː.ni.əs/

• consisting of parts or things that are very different from each other

Communication

System
Memory

Storage
PCIe

MemoryCPUGPU

Multi-chip
NVLink/NVSwitch

Multi-node
NVLink/NVSwitch

Infiniband

Multi-die
Grace Hopper

CPU+GPU

Communication

System
Memory

Storage
PCIe

MemoryCPUGPU

Grace/Hopper Superchip

NVIDIA Grace Hopper Superchip Architecture [Paper]

https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

CPU LPDDR5X

CPU LPDDR5X
240 GB

NVIDIA Grace Hopper Superchip

GPU HBM3
96 GB

GPU HBM3

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

N
V

Li
nk

 N
et

w
or

k
up

 t
o

25
6

d
ev

ic
es

H
ig

h
-S

pe
ed

 I/
O

Grace/Hopper Superchip

CPU LPDDR5X

CPU LPDDR5X
240 GB

NVIDIA Grace Hopper Superchip

GPU HBM3
96 GB

GPU HBM3

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

N
V

Li
nk

 N
et

w
or

k
up

 t
o

25
6

d
ev

ic
es

H
ig

h
-S

pe
ed

 I/
O

Grace/Hopper Superchip

... computing is a not a chip problem
It’s a software and chip problem

Grace/Hopper Superchip

CPU LPDDR5X

CPU LPDDR5X
240 GB

NVIDIA Grace Hopper Superchip

GPU HBM3
96 GB

GPU HBM3

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

N
V

Li
nk

 N
et

w
or

k
up

 t
o

25
6

d
ev

ic
es

H
ig

h
-S

pe
ed

 I/
O

N
V

LI
N

K
 C

2C
90

0
G

B
/s4x

16x PCIe-5
512 GB/s

18x NVLINK 4
900 GB/s

4000 GB/s500 GB/s

Accelerating HPC applications with ISO C++ on Grace Hopper [S51054]

https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1664475336900001luGe

Global Access to All Data
Cache-coherent access via NVLink C2C from either processor to either physical memory

Grace directly reading Hopper’s memory

CPU fetches GPU data into CPU L3 cache
Cache remains coherent with GPU memory
Changes to GPU memory evict cache line

Hopper directly reading Grace’s memory

GPU loads CPU data via CPU L3 cache
CPU and GPU can both hit on cached data
Changes to CPU memory update cache line

N
VL

in
k

C2
C

CPU LPDDR5X

Grace
CPU

CPU L3 Cache

GPU HBM3

Hopper
GPU

GPU L2 Cache

data

GPU line

N
VL

in
k

C2
C

CPU LPDDR5X

Grace
CPU

CPU L3 Cache

GPU HBM3

Hopper
GPU

GPU L2 Cache

data

CPU line

Grace/Hopper Unified Memory
Address Translation Service (ATS) allows full access to all CPU & GPU allocations

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

CPU
Physical
Memory

GPU
Physical
Memory

Shared system page table

Y Data located in GPU
physical memory

Data located in CPU
physical memory

load X
load Y

ATS creates a single page table for the whole system
NVLink C2C allows access to all physical memory without migration

X

translate
X

translate
Y

High Bandwidth Memory Access & Automatic Data Migration

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

CPU
Physical
Memory

GPU
Physical
Memory

X 50
0

G
B

/s

N
V

LI
N

K
 C

2C
90

0
G

B
/s

Hopper can access Grace memory
at full CPU memory speed of 500 GB/sec

High Bandwidth Memory Access & Automatic Data Migration

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

CPU
Physical
Memory

GPU
Physical
Memory

X

40
00

 G
B

/s

But Hopper can access its own memory
at full HBM speed of 4000 GB/sec

X50
0

G
B

/s

N
V

LI
N

K
 C

2C
90

0
G

B
/s

High Bandwidth Memory Access & Automatic Data Migration

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

CPU
Physical
Memory

GPU
Physical
Memory

The system can automatically migrate
both managed and CPU-allocated memory

in order to optimize access speed

X

High Bandwidth Memory Access & Automatic Data Migration

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

CPU
Physical
Memory

GPU
Physical
Memory

ATS shared page table means that both CPU and GPU
automatically access X in its new location after migration

X

Shared system page table

X

load Xload X address of X

Grace/Hopper SuperChip Performance On Different Workloads

Programming Model and Applications for the Grace Hopper Superchip [S51120]

https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1665677520623001wlpN

Multi-Chip Systems

NVLink Network

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

Hopper
GPU

NVLink Connects Up To 256 Superchips

N
V

Li
nk

 N
et

w
or

k
up

 t
o

25
6

d
ev

ic
es

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

100 GB/sec
Infiniband
NDR400

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

100 GB/sec
Infiniband
NDR400

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

100 GB/sec
Infiniband
NDR400

N
VL

in
k

C2
C

Grace
CPU

Hopper
GPU

100 GB/sec
Infiniband
NDR400

https://www.nvidia.com/en-us/data-center/nvlink/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

https://www.nvidia.com/en-us/data-center/nvlink/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

Multi-chip
NVLINK+NVSWITCH

Multi-node (MNNVL)
NVLINK+NVSWITCH up to 256 GPUs

+ Infiniband

Multi-die
NVLINK C2C

Multi-Node NVLink cuFFTMp
Performance Projections

• MNNVL offers significant performance on MGMN FFTs

• Drop in performance between 128 and 256 GPU, because IB is used (left to right – Green bars)

• Using CPU memory on Grace Hopper allows for bigger sizes, 32k3 starting at 1024 GPUs

0

0.1

0.2

0.3

0.4

0.5

0.6

256 512 1024 2048 4096 8192 16384 256 512 1024 2048 4096 8192 16384

128 GPUs 256 GPUs
FFT Size (Cubed)

A100 GH100 GH100+CPU GH100+MNNVL GH100+MNNVL+CPU

https://www.nvidia.com/en-us/data-center/nvlink/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

H100 H100 + Grace H100 + MNNVL H100 + MNNVL + Grace

18

15

12

9

6

3

0

R
el

at
iv

e
Pe

rf
or

m
an

ce
(H

ig
he

r
is

 b
et

te
r)

https://www.nvidia.com/en-us/data-center/nvlink/
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper

Part 2:
Mixed-Precision scientific
computing with Tensor Cores
Harun Bayraktar
Cole Brower
Cherin Joseph
Jack Kosaian
Dmitry Lyakh
Lukas Mosimann
Victor Podlozhnyuk
Paul Springer
Haicheng Wu

Tensor Core Performance Across GPU Generations

7.5

15

125

20 20

156

312 312

67 67

535

1071 1071

2141

1

10

100

1000

10000

FP64 FP32 TF32 FP16 BF16 FP8
Pe

ak
 P

er
fo

rm
an

ce
 [

TF
LO

P
S

]

Volta
V100 (2017)

Ampere
A100 (2020)

Hopper
H100 (2023)

Float FP32

Half FP16

Bfloat16 BF16

8-bit 10-bit
TF32

8-bit 23-bit

5-bit 10-bit

8-bit 7-bit

Numerical
Range

Numerical Precision

value = (-1)sign x 2exponent x (1 + mantissa)

FP8 (E5M2)
5-bit 2-bit

FP8 (E4M3)
4-bit 3-bit

Sum with
FP32

accumulator

A

B
FP32

Full precision
product

+x
BF16

BF16

A ⨉ B

What types of things can we do to take advantage of Tensor Cores?
Non-Exhaustive Short List

• Tensor Cores have provided mixed-precision algorithms
algorithm developers increased opportunities and
motivation [1]

• Algorithms that facilitate drop-in replacement for
common functions
• Matrix-multiply implementations

• Emulate full range and accuracy
• Works for all use cases and can be made default

• Emulate partial range and accuracy [2]
• Works for some use cases but cannot be made default

• FFTs [3]

• New algorithms that use mixed-precision
• Iterative refinement linear system solver with fallbacks [4]

• Can be drop-in for LAPACK <T>GETRF/S

[1] Abdelfattah A, Anzt H, Boman EG, et al. A survey of numerical linear algebra methods utilizing mixed-precision arithmetic. The International Journal of High Performance Computing
Applications. 2021;35(4):344-369. doi:10.1177/10943420211003313
[2] Hiroyuki Ootomo and Rio Yokota, Recovering single precision accuracy from Tensor Cores while surpassing the FP32 theoretical peak performance, 2022 https://arxiv.org/pdf/2203.03341.pdf
[3] L. Pisha and Ł. Ligowski, "Accelerating non-power-of-2 size Fourier transforms with GPU Tensor Cores," 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Portland,
OR, USA, 2021, pp. 507-516, doi: 10.1109/IPDPS49936.2021.00059.
[4] Haidar Azzam, Bayraktar Harun, Tomov Stanimire, Dongarra Jack and Higham Nicholas J. 2020Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear
systems, Proc. R. Soc. A.4762020011020200110 https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110

Alow ← toLow(AFP32)

∆Alow ← toLow(AFP32 − toF32 (Alow)) × 2 11

Blow ← toLow(BFP32)

∆Blow ← toLow(BFP32 − toF32 (Blow)) × 2 11

CF32 ≈ Alow · Blow

 + (∆Alow · Blow + Alow · ∆Blow) × 2 -11

 + ∆Alow · ∆Blow × 2 -22 ß Can this term be ignored?

C = A · B algorithm using TF32 tensor cores for FP32 GEMMs [2]

8-bit 10-bit
TF32

https://arxiv.org/pdf/2203.03341.pdf
https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110

Tensor Core Accelerated Iterative Refinement Solver
FP64 accuracy linear system solution

• Iterative refinement method [1]
• Dense Linear Solver for Ax=b

• Can substitute <T>GETRF/S from LAPACK

• Main idea:
• Move O(n3) operations during LU factorization to

mixed-precision Tensor Cores

• Use the factor as a preconditioner for an iterative
solver at FP64 where operations have O(n2) complexity

• Reduces reliance on FP64 compute throughput while
delivering better performance

• Top500 benchmark HPL-MxP (formerly HPL-AI) uses
this approach

1

10

100

1000

10000

100000

1000000

0

4

8

12

16

20

24

28

32

0 4000 8000 12000 16000 20000 24000 28000 32000

C
on

d
it

io
n

N
um

b
er

 o
f

A

TF
LO

P/
S

Matrix Size

Effective throughput of solving Ax=b to FP64 accuracy

FP16-TC->FP64 (V100)

FP16-TC->FP64 (TU102)

FP32->FP64 (V100)

FP32->FP64 (TU102)

FP64 (V100)

FP64 (TU102)

Condition Number

[1] Haidar Azzam, Bayraktar Harun, Tomov Stanimire, Dongarra Jack and Higham Nicholas J. 2020Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear systems,
Proc. R. Soc. A.4762020011020200110 https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110

https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110

Tensor Core Accelerated Iterative Refinement Solver
Speed-ups relative to full FP64 baseline solver

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 v

is
co

ro
ck

s

 v
is

co
pl

as
ti

c2

m

ul
t_

dc
op

_0
1

 o
ne

to
ne

1

 T

SO
PF

_R
S_

b1
62

_c
4

 r

ai
l_

20
20

9

st
d1

_J
ac

2

Zd

_J
ac

3

 h

um
an

_g
en

e1

 r
ae

fs
ky

3

 n

s3
Da

 b
cs

st
k3

7

 I

ll_
St

ok
es

 T

SO
PF

_R
S_

b3
00

_c
2

t3
dl

 m

ix
ta

nk
_n

ew

 G

oo
dw

in
_0

54

 m
sc

23
05

2

 T
EM

27
62

3

af

23
56

0

 Z

ha
o1

sv

d_
ar

it
h_

co
nd

_1
00

 s

m
e3

Db

 S
iO

 w

an
g3

 c
ry

st
k0

3

 c
ry

st
m

03

sv

d_
ar

it
h_

co
nd

_1
00

 T
SO

PF
_R

S_
b2

38
3

 t

hr
ea

d

 n

d1
2k

 w

av
eg

ui
de

3D

AB
AC

U
S_

sh
el

l_
m

d

 h

ib
er

t2
_c

on
d_

10
0

 w

in
ds

cr
ee

n

lig
ht

_i
n_

ti
ss

ue

 h

ib
er

t2
_c

on
d_

10
0

Sp
ee

d
u
p
 o

ve
r

FP
64

Comparison of Performance vs. Base Solver Precision

FP32

FP16-TC

BF16-TC

TF32-TC

< 1 Speed-up
indicates fallback to

FP64 solver cases

Goal
Accelerate single precision (FP32) matrix multiplies without any loss of range or accuracy

• Algorithm that uses BF16 Tensor Cores

• Study accuracy of implementation for corner cases

• Prototype implementation in cuBLAS and cuTENSOR

• Validate accuracy with real world applications

Baseline implementations in
cuBLAS and cuTENSOR use

single precision IEEE754
FMA instructions

Weather Forecasting Quantum Computing Condensed Matter Physics

Algorithm Description
BF16/9 Algorithm

• The FP32 inputs are decomposed into 3 scaled BF16 components
a = a0 + 2-8.a1 + 2-16.a2
b = b0 + 2-8.b1 + 2-16.b2

• The Inputs are decomposed using the CUDA cores

• The multiply-add operation is computed as a sum of 9 scaled partial products
a * b + c = a0.b0 + 2-8 .a0.b1 + 2-16.a0.b2

+ 2-8 .a1.b0 + 2-16.a1.b1 + 2-24.a1.b2
+ 2-16.a2.b0 + 2-24.a2.b1 + 2-32.a2.b2 + c

• The partial products are computed in the BF16 Tensor cores

• The partial products are scaled appropriately in the CUDA cores

• The tensor cores and CUDA cores work in parallel

• The effective FP32 FLOPs is 1/9th that of the BF16 tensor core FLOPs
• On H100 119 vs 67 TFLOP/s à ~1.8X maximum speed-up

a (fp32)

a0 (bf16)

a1 (bf16)

a2 (bf16)

b2 (bf16)b1 (bf16)b0 (bf16)

c (fp32)

* 2
-0

* 2
-8

* 2
-16

* 2
-0 * 2

-8 * 2
-16

Ba
nd

 4

Ba
nd

 3

Ba
nd

 2
Ba

nd
 1

Ba
nd

 0

b (fp32)

Measuring Accuracy
Smoke test: testing different uniform-exponent combinations

RMS		= ∑!,#{#$%&'(!,#)#$%&'(.+,-.! #}$

∑!,#{#$%&'(.+,-..!,#}$
𝑆𝑁𝑅 = −20.0 ∗ 𝑙𝑜𝑔01

2&!!
2!&'

= −20.0 ∗ 𝑙𝑜𝑔01 𝑅𝑀𝑆

FFMA

BF16/9

TF32/3

Matrix mul dimensions: [512 x 2048] = [512 x 1024] * [1024 x 2048]

-149
(MIN_DENORM_EXP)

A exponent

A exponent

B
 e

xp
on

en
t

B
 e

xp
on

en
t

(RMS =1.0)

(RMS=1E-2)

(RMS=1E-1)

(RMS=1E-4)

(RMS=1E-3)

(RMS=1E-7)

(RMS=1E-5)

(RMS=1E-6)

100

50

0

-50

-100

-100 -50 0 50 100

0

20

40

60

80

100

120

140

S
N

R
, d

B

-40 -20 0 20 40

-140

-130

-120

-110

-110

-120

-130

-140

-110

-120

-130

-140

Numerical Accuracy Study
Results for two different data sets

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1 4 16 64 256 1024 4096 16384

R
el

at
iv

e
Er

ro
r

k

Normal Distribution Dataset [1]

FFMA
TF32/3
BF16/9

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

-150 -140 -130 -120 -110 -100

R
el

at
iv

e
Er

ro
r

B exponent

ROI subset: A_exp + B_exp = -102 as 1D graph, (K = 1024)

[1] Hiroyuki Ootomo and Rio Yokota, Recovering single precision accuracy from Tensor Cores while
surpassing the FP32 theoretical peak performance, 2022 https://arxiv.org/pdf/2203.03341.pdf

TF32/3

https://arxiv.org/pdf/2203.03341.pdf

Weather Forecast Simulation
Accelerate Spectral Transforms

• IFS: Integrated Forecast System from ECMWF

• Weather models moving to higher and higher resolution
(e.g. TCo3999 ~ 2.5km global resolution). Spectral
transform is a major bottleneck (>50% of the cost)
• Spectral transfrom = All2All + FFT + All2All + GEMM
à Scaling Bottlenecks are All2All and GEMMs

• Mid-term we aim to run weather models at a resolution
of ~1 km because that would allow explicitly resolving
convection

• Ectrans is the spectral transform library extracted from
the full model. https://github.com/ecmwf-ifs/ectrans

• We use Ectrans to check accuracy of our emulated
FP32 matrix multiply implementation

https://github.com/ecmwf-ifs/ectrans

Weather Forecast Simulation
Accelerate Spectral Transforms

• Absolute deviations after 1000
iterations of forward and backward
spherical transforms

• Ground truth is the original input

• In all cases, BF16X9 gives at least
similar, for some variables
significantly superior results

• Velocities can behave different
compared to temperature because
they have an additional conversion
from u/v (in grid-point space) to
divergence/vorticity (in spectral
space)

• TF32 has significant (too large)
deviations for temperature and
explodes for velocities
• TF32/3 implementation here is

without scaling

TemperatureVelocities: U, V

Quantum Computing Simulations
Accelerate Tensor Network Contractions

• Validation of a quantum processor requires cross-entropy
benchmarking against a simulation of a random quantum
circuit of specific depth

• Simulation of a quantum circuit can be reduced to the
contraction of a tensor network representing the circuit

• cuTensorNet library from cuQuantum SDK accelerates
tensor network contractions on NVIDIA GPUs

• Tensor network contraction is expressed as a sequence of
pairwise tensor contractions executed by the cuTensor
library

• Algorithm development and validation of modern
quantum chips is an extremely computationally
demanding task that significantly benefits from GPU
acceleration

Arute, F., Arya, K., Babbush, R. et al. Quantum supremacy using a
programmable superconducting processor. Nature 574, 505–510 (2019).

Google's Sycamore Quantum Chip (53 qubits)

Quantum Algorithm

Quantum Circuit
Tensor Network

𝛽 = 𝜓! 𝑈 𝜓"

Quantum Computing Simulations
Accelerate Tensor Network Contractions

• We simulated the 53-qubit Sycamore quantum
chip with 12 layers of random gates and computed
probability amplitudes for 64 bit-strings

• 649216 total pairwise tensor contractions;

• 1.7% of the tensor contractions account for 95%
of the total 0.83 PFLOPs (k-dim >= 16)
• We offload these to BF16/9

• The relative error of the computed probability
amplitudes with BF16/9 less than FP32 when
compared to FP64 baseline

• The variation of amplitude values due to the use of
different tensor network contraction paths for
FP32 compute introduces larger differences than
BF16/9

Path0
FP32 vs FP64

Path0
BF16/9 vs FP64

Path0
BF16/9 vs FP32

FP32
Path1 vs Path0

FP32 Path1
vs FP64 Path 0

𝛽 = 𝜓! 𝑈 𝜓"

Condensed Matter Physics Simulations
Accelerate Tensor Network Contractions

• Simulating electronic structure of materials is an
extremely complex and computationally demanding task

• Widespread use of phenomenological models and
Hamiltonians to reduce the complexity of the task

• The dimensionality of the corresponding linear Hilbert
space grows exponentially with the number of
simulated spins or electrons, thus mandating
approximate solutions

• Tensor network theory provides a powerful systematic
theoretical framework for approximating spin or
electronic states of materials in highly-dimensional
linear spaces

• The regular linear- and eigen-solvers can be
reformulated in the language of tensor network theory,
resulting in a drastic reduction of the computational
cost due to the use of tensor factorization

• Transverse-field Ising spin Hamiltonian is used as a
paradigmatic model for simulating a broad range of
quantum phenomena H = -c Σ zizj – g Σ xi

Transverse-field spin Ising Hamiltonian

Condensed Matter Physics Simulations
Accelerate Tensor Network Contractions

• We simulated the 16-site transverse-field Ising Hamiltonian

• The ground spin state is factorized as a binary tensor tree
with maximal bond dimension of 16

• The variational optimization of the ground spin state involves
two main numerical steps: (1) Tensor network contraction;
(2) Modified Gram-Schmidt orthogonalization

• The Modified Gram-Schmidt orthogonalization step must be
computed in FP64, otherwise the solver may diverge

• Most Flops are spent in FP32 tensor network contractions
--> offload to BF16/9

• The ground state energy is computed as a reduction over
many terms --> Expect cancellation of individual term errors

• The resulting ground state energy is the same up to the 5th
digit after decimal point: FP32 and BF16/9 produce about
the same error (< 1e-5) as compared to full FP64

Precision Energy Error
FP64 -17.02418(9) 0
FP32 -17.02419(7) 8e-6
BF16/9 -17.02418(3) 6e-6

Ground state energy of the 16-site Ising Hamiltonian
all converged to the same 2E-6 tolerance

Individual spin sites (physical degrees of freedom)

H = -c Σ zizj – g Σ xi

R
en

or
m

al
iz

at
io

n

Transverse-field spin Ising Hamiltonian

Closing Remarks

Concluding Remarks
Heterogeneous Computing At Multiple Levels

• Heterogeneity for HPC is reality at many different
levels
• Within a server and processor
• Data storage, locality and access
• Across the network that connects processor
• Software stack
• Within algorithms

• There are many challenges and opportunities for
developing high-performance software
• ... computing is a not a chip problem. It’s a software and

chip problem

• Tensor Cores that power AI can also be leveraged to
transparently accelerate applications that require
higher precision without any loss of accuracy
• TF32/3, BF16/9, and similar algorithms can be extended

to create new range and precision modes that can be
tailored for applications for further acceleration

7.5

15

125

20 20

156

312 312

67 67

535

1071 1071

2141

1

10

100

1000

10000

FP64 FP32 TF32 FP16 BF16 FP8

Pe
ak

 P
er

fo
rm

an
ce

 [
TF

LO
P

S
]

Volta
V100 (2017)

Ampere
A100 (2020)

Hopper
H100 (2023)

Are we ready to reap the benefits
of higher-performance non-IEEE
computations without sacrificing

accuracy?
It’s also good for our planet!

