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Part 1:
Heterogeneous Computing



Heterogeneous Hardware
Specialization of hardware components

• heterogeneous
• adjective  US: /ˌhet̬.ə.roʊˈdʒiː.ni.əs/ UK: /ˌhet.ər.əˈdʒiː.ni.əs/

• consisting of parts or things that are very different from each other
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Multi-chip
NVLink/NVSwitch

Multi-node
NVLink/NVSwitch

Infiniband

Multi-die
Grace Hopper

CPU+GPU
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Grace/Hopper Superchip

NVIDIA Grace Hopper Superchip Architecture [Paper]

https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
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... computing is a not a chip problem
It’s a software and chip problem



Grace/Hopper Superchip
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Accelerating HPC applications with ISO C++ on Grace Hopper [S51054]

https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1664475336900001luGe


Global Access to All Data
Cache-coherent access via NVLink C2C from either processor to either physical memory

Grace directly reading Hopper’s memory

CPU fetches GPU data into CPU L3 cache
Cache remains coherent with GPU memory
Changes to GPU memory evict cache line

Hopper directly reading Grace’s memory

GPU loads CPU data via CPU L3 cache
CPU and GPU can both hit on cached data
Changes to CPU memory update cache line
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Grace/Hopper Unified Memory
Address Translation Service (ATS) allows full access to all CPU & GPU allocations
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High Bandwidth Memory Access & Automatic Data Migration
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High Bandwidth Memory Access & Automatic Data Migration
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High Bandwidth Memory Access & Automatic Data Migration
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High Bandwidth Memory Access & Automatic Data Migration
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Grace/Hopper SuperChip Performance On Different Workloads

Programming Model and Applications for the Grace Hopper Superchip [S51120]

https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1665677520623001wlpN


Multi-Chip Systems

NVLink Network
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NVLink Connects Up To 256 Superchips
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Multi-chip
NVLINK+NVSWITCH

Multi-node (MNNVL)
NVLINK+NVSWITCH up to 256 GPUs

+ Infiniband

Multi-die
NVLINK C2C



Multi-Node NVLink cuFFTMp
Performance Projections

• MNNVL offers significant performance on MGMN FFTs

• Drop in performance between 128 and 256 GPU, because IB is used (left to right – Green bars)

• Using CPU memory on Grace Hopper allows for bigger sizes, 32k3 starting at 1024 GPUs
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Tensor Core Performance Across GPU Generations
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What types of things can we do to take advantage of Tensor Cores?
Non-Exhaustive Short List

• Tensor Cores have provided mixed-precision algorithms 
algorithm developers increased opportunities and 
motivation [1]

• Algorithms that facilitate drop-in replacement for 
common functions
• Matrix-multiply implementations

• Emulate full range and accuracy
• Works for all use cases and can be made default

• Emulate partial range and accuracy [2]
• Works for some use cases but cannot be made default

• FFTs [3]

• New algorithms that use mixed-precision
• Iterative refinement linear system solver with fallbacks [4]

• Can be drop-in for LAPACK <T>GETRF/S

[1] Abdelfattah A, Anzt H, Boman EG, et al. A survey of numerical linear algebra methods utilizing mixed-precision arithmetic. The International Journal of High Performance Computing 
Applications. 2021;35(4):344-369. doi:10.1177/10943420211003313
[2] Hiroyuki Ootomo and Rio Yokota, Recovering single precision accuracy from Tensor Cores while surpassing the FP32 theoretical peak performance, 2022 https://arxiv.org/pdf/2203.03341.pdf
[3] L. Pisha and Ł. Ligowski, "Accelerating non-power-of-2 size Fourier transforms with GPU Tensor Cores," 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Portland, 
OR, USA, 2021, pp. 507-516, doi: 10.1109/IPDPS49936.2021.00059.
[4] Haidar Azzam, Bayraktar Harun, Tomov Stanimire, Dongarra Jack and Higham Nicholas J. 2020Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear 
systems, Proc. R. Soc. A.4762020011020200110 https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110 

Alow ← toLow(AFP32)

∆Alow ← toLow(AFP32 − toF32 (Alow)) × 2 11

Blow ← toLow(BFP32)

∆Blow ← toLow(BFP32 − toF32 (Blow)) × 2 11

CF32 ≈ Alow · Blow

    + (∆Alow · Blow + Alow · ∆Blow) × 2 -11

    + ∆Alow · ∆Blow × 2 -22 ß Can this term be ignored?

C = A · B algorithm using TF32 tensor cores for FP32 GEMMs [2]

8-bit 10-bit
TF32

https://arxiv.org/pdf/2203.03341.pdf
https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110


Tensor Core Accelerated Iterative Refinement Solver
FP64 accuracy linear system solution 

• Iterative refinement method [1]
• Dense Linear Solver for Ax=b

• Can substitute <T>GETRF/S from LAPACK

• Main idea:
• Move O(n3) operations during LU factorization to 

mixed-precision Tensor Cores

• Use the factor as a preconditioner for an iterative 
solver at FP64 where operations have O(n2) complexity

• Reduces reliance on FP64 compute throughput while 
delivering better performance

• Top500 benchmark HPL-MxP (formerly HPL-AI) uses 
this approach
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Proc. R. Soc. A.4762020011020200110 https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110 
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Tensor Core Accelerated Iterative Refinement Solver
Speed-ups relative to full FP64 baseline solver
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Goal
Accelerate single precision (FP32) matrix multiplies without any loss of range or accuracy

• Algorithm that uses BF16 Tensor Cores

• Study accuracy of implementation for corner cases

• Prototype implementation in cuBLAS and cuTENSOR

• Validate accuracy with real world applications 

Baseline implementations in 
cuBLAS and cuTENSOR use 

single precision IEEE754 
FMA instructions

Weather Forecasting Quantum Computing Condensed Matter Physics



Algorithm Description
BF16/9 Algorithm

• The FP32 inputs are decomposed into 3 scaled BF16 components
a = a0 + 2-8.a1 + 2-16.a2
b = b0 + 2-8.b1 + 2-16.b2

• The Inputs are decomposed using the CUDA cores

• The multiply-add operation is computed as a sum of 9 scaled partial products
a * b + c =       a0.b0 + 2-8 .a0.b1 + 2-16.a0.b2

+ 2-8 .a1.b0 + 2-16.a1.b1 + 2-24.a1.b2
+ 2-16.a2.b0 + 2-24.a2.b1 + 2-32.a2.b2 + c

• The partial products are computed in the BF16 Tensor cores

• The partial products are scaled appropriately in the CUDA cores

• The tensor cores and CUDA cores work in parallel

• The effective FP32 FLOPs is 1/9th that of the BF16 tensor core FLOPs
• On H100 119 vs 67 TFLOP/s à ~1.8X maximum speed-up
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Measuring Accuracy
Smoke test: testing different uniform-exponent combinations
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Numerical Accuracy Study
Results for two different data sets
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[1] Hiroyuki Ootomo and Rio Yokota, Recovering single precision accuracy from Tensor Cores while 
surpassing the FP32 theoretical peak performance, 2022 https://arxiv.org/pdf/2203.03341.pdf
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https://arxiv.org/pdf/2203.03341.pdf


Weather Forecast Simulation
Accelerate Spectral Transforms

• IFS: Integrated Forecast System from ECMWF

• Weather models moving to higher and higher resolution 
(e.g. TCo3999 ~ 2.5km global resolution). Spectral 
transform is a major bottleneck (>50% of the cost)
• Spectral transfrom = All2All + FFT + All2All + GEMM
à Scaling Bottlenecks are All2All and GEMMs

• Mid-term we aim to run weather models at a resolution 
of ~1 km because that would allow explicitly resolving 
convection

• Ectrans is the spectral transform library extracted from 
the full model. https://github.com/ecmwf-ifs/ectrans

• We use Ectrans to check accuracy of our emulated 
FP32 matrix multiply implementation

https://github.com/ecmwf-ifs/ectrans


Weather Forecast Simulation
Accelerate Spectral Transforms

• Absolute deviations after 1000 
iterations of forward and backward 
spherical transforms

• Ground truth is the original input

• In all cases, BF16X9 gives at least 
similar, for some variables 
significantly superior results

• Velocities can behave different 
compared to temperature because 
they have an additional conversion 
from u/v (in grid-point space) to 
divergence/vorticity (in spectral 
space)

• TF32 has significant (too large) 
deviations for temperature and 
explodes for velocities
• TF32/3 implementation here is 

without scaling

TemperatureVelocities: U, V



Quantum Computing Simulations
Accelerate Tensor Network Contractions

• Validation of a quantum processor requires cross-entropy 
benchmarking against a simulation of a random quantum 
circuit of specific depth

• Simulation of a quantum circuit can be reduced to the 
contraction of a tensor network representing the circuit

• cuTensorNet library from cuQuantum SDK accelerates 
tensor network contractions on NVIDIA GPUs

• Tensor network contraction is expressed as a sequence of 
pairwise tensor contractions executed by the cuTensor 
library

• Algorithm development and validation of modern 
quantum chips is an extremely computationally 
demanding task that significantly benefits from GPU 
acceleration

Arute, F., Arya, K., Babbush, R. et al. Quantum supremacy using a 
programmable superconducting processor. Nature 574, 505–510 (2019).

Google's Sycamore Quantum Chip (53 qubits)

Quantum Algorithm

Quantum Circuit
Tensor Network
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Quantum Computing Simulations
Accelerate Tensor Network Contractions

• We simulated the 53-qubit Sycamore quantum 
chip with 12 layers of random gates and computed 
probability amplitudes for 64 bit-strings

• 649216 total pairwise tensor contractions;

• 1.7% of the tensor contractions account for 95% 
of the total 0.83 PFLOPs (k-dim >= 16)
• We offload these to BF16/9

• The relative error of the computed probability 
amplitudes with BF16/9 less than FP32 when 
compared to FP64 baseline

• The variation of amplitude values due to the use of 
different tensor network contraction paths for 
FP32 compute introduces larger differences than 
BF16/9

Path0
FP32 vs FP64

Path0
BF16/9 vs FP64

Path0
BF16/9 vs FP32

FP32
Path1 vs Path0

FP32 Path1
vs FP64 Path 0

𝛽 = 𝜓! 𝑈 𝜓"



Condensed Matter Physics Simulations
Accelerate Tensor Network Contractions

• Simulating electronic structure of materials is an 
extremely complex and computationally demanding task

• Widespread use of phenomenological models and 
Hamiltonians to reduce the complexity of the task

• The dimensionality of the corresponding linear Hilbert 
space grows exponentially with the number of 
simulated spins or electrons, thus mandating 
approximate solutions

• Tensor network theory provides a powerful systematic 
theoretical framework for approximating spin or 
electronic states of materials in highly-dimensional 
linear spaces

• The regular linear- and eigen-solvers can be 
reformulated in the language of tensor network theory, 
resulting in a drastic reduction of the computational 
cost due to the use of tensor factorization

• Transverse-field Ising spin Hamiltonian is used as a 
paradigmatic model for simulating a broad range of 
quantum phenomena H = -c Σ zizj – g Σ xi

Transverse-field spin Ising Hamiltonian



Condensed Matter Physics Simulations
Accelerate Tensor Network Contractions

• We simulated the 16-site transverse-field Ising Hamiltonian

• The ground spin state is factorized as a binary tensor tree 
with maximal bond dimension of 16

• The variational optimization of the ground spin state involves 
two main numerical steps: (1) Tensor network contraction;
(2) Modified Gram-Schmidt orthogonalization

• The Modified Gram-Schmidt orthogonalization step must be 
computed in FP64, otherwise the solver may diverge

• Most Flops are spent in FP32 tensor network contractions
--> offload to BF16/9

• The ground state energy is computed as a reduction over 
many terms --> Expect cancellation of individual term errors

• The resulting ground state energy is the same up to the 5th 
digit after decimal point: FP32 and BF16/9 produce about 
the same error (< 1e-5) as compared to full FP64

Precision Energy Error
FP64 -17.02418(9) 0
FP32 -17.02419(7) 8e-6
BF16/9 -17.02418(3) 6e-6

Ground state energy of the 16-site Ising Hamiltonian 
all converged to the same 2E-6 tolerance

Individual spin sites (physical degrees of freedom)

H = -c Σ zizj – g Σ xi
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Transverse-field spin Ising Hamiltonian
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Concluding Remarks
Heterogeneous Computing At Multiple Levels

• Heterogeneity for HPC is reality at many different 
levels
• Within a server and processor
• Data storage, locality and access
• Across the network that connects processor
• Software stack
• Within algorithms

• There are many challenges and opportunities for 
developing high-performance software
• ... computing is a not a chip problem. It’s a software and 

chip problem

• Tensor Cores that power AI can also be leveraged to 
transparently accelerate applications that require 
higher precision without any loss of accuracy
• TF32/3, BF16/9, and similar algorithms can be extended 

to create new range and precision modes that can be 
tailored for applications for further acceleration
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Are we ready to reap the benefits 
of  higher-performance non-IEEE 
computations without sacrificing 

accuracy?
It’s also good for our planet!




