NISA @knerey

[S .y

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidary of Honeywell
International Inc., for the U. S. Department of Energy's National Nuclear Security Administration
under contract DE-NAO0O03525. This document is SAND #2019-2042 C.

Sandia
National
Laboratories

Modern C++ in Computational
Science

David S. Hollman, Mark Hoemmen, Daniel Sunderland,
Christian R. Trott

bit.ly/cpp-siamcse2019

http://bit.ly/cpp-siamcse2019

Why should we use C++ for HPC?

Why should we use C++ for HPC?

e Decades ago, HPC hardware crossed the threshold where it was ‘
necessary to primarily use commodity parts

Why should we use C++ for HPC?

e Decades ago, HPC hardware crossed the threshold where it was ‘
necessary to primarily use commodity parts
e Similarly, we are long past the point where it makes sense to use non- |

commodity /anguages

Why should we use C++ for HPC?

e Decades ago, HPC hardware crossed the threshold where it was ‘
necessary to primarily use commodity parts

e Similarly, we are long past the point where it makes sense to use non- |
commodity /anguages

e C++ dominates the performance sensitive code at many companies with ’

much larger budgets than we have (Google, Facebook, ...)

Why should we use C++ for HPC?

Decades ago, HPC hardware crossed the threshold where it was ‘
necessary to primarily use commodity parts

Similarly, we are long past the point where it makes sense to use non- |
commodity /anguages

C++ dominates the performance sensitive code at many companies with ’

much larger budgets than we have (Google, Facebook, ...)
By developing scientific applications in "commodity" languages like C++,
we get: ‘

Why should we use C++ for HPC?

Decades ago, HPC hardware crossed the threshold where it was ‘
necessary to primarily use commodity parts

Similarly, we are long past the point where it makes sense to use non- |
commodity /anguages

C++ dominates the performance sensitive code at many companies with ’

much larger budgets than we have (Google, Facebook, ...)

By developing scientific applications in "commodity" languages like C++,

we get: ‘
o Compiler development and optimizations from industry

Why should we use C++ for HPC?

Decades ago, HPC hardware crossed the threshold where it was ‘
necessary to primarily use commodity parts

Similarly, we are long past the point where it makes sense to use non- |
commodity /anguages

C++ dominates the performance sensitive code at many companies with ’

much larger budgets than we have (Google, Facebook, ...)

By developing scientific applications in "commodity" languages like C++,

we get: ‘
o Compiler development and optimizations from industry

e Community knowledge and teaching materials

Why should we use C++ for HPC?

Decades ago, HPC hardware crossed the threshold where it was ‘
necessary to primarily use commodity parts

Similarly, we are long past the point where it makes sense to use non- |
commodity /anguages

C++ dominates the performance sensitive code at many companies with ’

much larger budgets than we have (Google, Facebook, ...)

By developing scientific applications in "commodity" languages like C++,
we get: ‘
o Compiler development and optimizations from industry

e Community knowledge and teaching materials
e The ability to hire "commodity" developers

Why should we use C++ for HPC?

Decades ago, HPC hardware crossed the threshold where it was
necessary to primarily use commodity parts

Similarly, we are long past the point where it makes sense to use non-
commodity /anguages

C++ dominates the performance sensitive code at many companies with
much larger budgets than we have (Google, Facebook, ...)

By developing scientific applications in "commodity" languages like C++,
we get:

o Compiler development and optimizations from industry

e Community knowledge and teaching materials

e The ability to hire "commodity" developers

Critically, though, we lose much of this if we do not keep our codebases
up to date with modern C++ patterns, features, and idioms.

DiscLAIMER

The "Big Ticket" Items: In Brief

The "Big Ticket" Items: In Brief

I
e For C++ 20, we got: ‘
I

The "Big Ticket" Items: In Brief

e For C++ 20, we got: ‘
e Concepts

The "Big Ticket" Items: In Brief

e For C++ 20, we got: ‘
e Concepts
e Contracts

The "Big Ticket" Items: In Brief

e For C++ 20, we got: ‘
e Concepts
e Contracts
e Coroutines ’

The "Big Ticket" Items: In Brief

e For C++ 20, we got: ‘
e Concepts
e Contracts |
e Coroutines ’

e Modules

The "Big Ticket" Items: In Brief

e For C++ 20, we got: ‘
e Concepts
e Contracts |
e Coroutines g
e Modules

e We did not get (but coming in C++23):

The "Big Ticket" ltems: In Brief

e For C++ 20, we got: ‘
e Concepts
e Contracts |
e Coroutines ’
e Modules

e We did not get (but coming in C++23):
e Networking |

The "Big Ticket" ltems: In Brief

e For C++ 20, we got: ‘
e Concepts
e Contracts |
e Coroutines g
e Modules

e We did not get (but coming in C++23):
e Networking |
e Reflection

The "Big Ticket" ltems: In Brief

e For C++ 20, we got: ‘
e Concepts
e Contracts
e Coroutines ’
e Modules

e We did not get (but coming in C++23):
e Networking |
e Reflection
e Executors

:mdspan

std:

std: :mdspan: Multidimensional Arrays in C++

ISO-C++ PROPOSAL

template <typename T, int I, int J, int K>
void three_loop_gemm(

std::mdspan<T, I, K> a, std::mdspan<T, K, 3> b, std::mdspan<T, I, J> result i
)
{
assert(a.extent(1l) == b.extent(0));
assert(a.extent(0) == result.extent(0));
assert(b.extent(l) == result.extent(1l));
for(int i = 0; i < a.extent(0); ++i) {
for(int j = 03 j < b.extent(1l); ++j) {
for(int k = 0; k < a.extent(1l); ++k) {
result(i, j) += a(i, k) * b(k, j);
I

http://wg21.link/P0009r9

std: :mdspan: Multidimensional Arrays in C++

ISO-C++ PROPOSAL ‘

std::mdspan<T, I, K> a, std::mdspan<T, K, 3> b, std::mdspan<T, I, J> result

std: :mdspan<T, I, K> is a multidimensional view with extents I and K (both of which can be runtime-
sized, using std: :dynamic_extent)

http://wg21.link/P0009r9

std: :mdspan: Multidimensional Arrays in C++

ISO-C++ PROPOSAL

assert(a.extent(l) == b.extent(0));
assert(a.extent(0) == result.extent(0));
assert(b.extent(l) == result.extent(1l));

These assertions can be evaluated at compile time if the extents I, J, and K are static sizes

http://wg21.link/P0009r9

std: :mdspan: Multidimensional Arrays in C++

ISO-C++ PROPOSAL

result(i, j) += a(i, k) * b(k, j);

Indexing uses the call operator for now.
(Work is in progress to also use the subscript operator [], see https://wg21.link/p1161r2)

http://wg21.link/P0009r9
https://wg21.link/p1161r2

std: :mdspan: Multidimensional Arrays in C++

ISO-C++ PROPOSAL

template <typename T, int I, int J, int K>
void three_loop_gemm(I
std: :mdspan<T, I, K> a, std::mdspan<T, K, J> b, std::mdspan<T, I, J> result
)
¢ B
assert(a.extent(l) == b.extent(0));
assert(a.extent(0) == result.extent(0));
assert(b.extent(l) == result.extent(1l));
for(int i = 0; i < a.extent(0); ++i) {
for(int j = 0; j < b.extent(1l); ++3j) {
for(int k = 0; k < a.extent(1l); ++k) {
result(i, j) += a(i, k) * b(k, j);
I

http://wg21.link/P0009r9

std: :mdspan Does Much More...

e mdspan is just an alias for basic_mdspan (just like string is an alias for ‘
basic_string): :

template<class T, ptrdiff_t... Extents>

using mdspan = basic_mdspan<T, extents<Extents...>>; !

std: :mdspan Does Much More...

e mdspan is just an alias for basic_mdspan (just like string is an alias for ‘
basic_string): |

template<class T, ptrdiff_t... Extents>

using mdspan = basic_mdspan<T, extents<Extents...>>; !

e The full form is much more flexible and customizable:

std: :mdspan Does Much More...

e mdspan is just an alias for basic_mdspan (just like string is an alias for ‘
basic_string):

template<class T, ptrdiff_t... Extents>

using mdspan = basic_mdspan<T, extents<Extents...>>; !

e The full form is much more flexible and customizable:

template<class ElementType,
class Extents,

class LayoutPolicy = layout_right,
class AccessorPolicy = accessor_basic<ElementType>>
class basic_mdspan;

. ‘ std: :mdspan Does Much More...

e mdspan is just an alias for basic_mdspan (just like string is an alias for ‘
basic_string): |

e The full form is much more flexible and customizable:

template<class ElementType, |

ElementType is the element data type

. ‘ std: :mdspan Does Much More...

e mdspan is just an alias for basic_mdspan (just like string is an alias for ‘
basic_string):

e The full form is much more flexible and customizable:

class Extents, |
Extents is an instance of a template std: :extents<...> that contains the shape information. i

. ‘ std: :mdspan Does Much More...

e mdspan is just an alias for basic_mdspan (just like string is an alias for ‘
basic_string):

e The full form is much more flexible and customizable:

class LayoutPolicy = layout_right,

LayoutPolicy is a customization point that lets you control how multi-indices are translated into memory]
offsets.

. ‘ std: :mdspan Does Much More...

e mdspan is just an alias for basic_mdspan (just like string is an alias for ‘
basic_string):

e The full form is much more flexible and customizable:

class AccessorPolicy = accessor_basic<ElementType>>

AccessorPol-icy is a customization point that lets you control how memory offsets are translated into
values, references, and pointers. i

std: :mdspan Does Much More...

e mdspan is just an alias for basic_mdspan (just like string is an alias for ‘
basic_string):

template<class T, ptrdiff_t... Extents> I
using mdspan = basic_mdspan<T, extents<Extents...>>;

e The full form is much more flexible and customizable:

template<class ElementType,
class Extents,

class LayoutPolicy = layout_right,
class AccessorPolicy = accessor_basic<ElementType>>
class basic_mdspan;

The LayoutPolicy Customization Point

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘
e Llayout_left (FORTRAN ordering)

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘
e Llayout_left (FORTRAN ordering)
e lLlayout_right (C ordering)

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘
e Llayout_left (FORTRAN ordering)
e lLlayout_right (C ordering)
e Llayout_stride (non-contiguous memory) '

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘
e Llayout_left (FORTRAN ordering)
e lLlayout_right (C ordering)
e Llayout_stride (non-contiguous memory) '
e The customization point is flexible enough to support things like

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘
e Llayout_left (FORTRAN ordering)
e lLlayout_right (C ordering)
e Llayout_stride (non-contiguous memory) '
e The customization point is flexible enough to support things like
e tiled layouts ‘

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘
e Llayout_left (FORTRAN ordering)
e lLlayout_right (C ordering)
e Llayout_stride (non-contiguous memory) '
e The customization point is flexible enough to support things like
e tiled layouts
e various forms of symmetric layouts ‘

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘
e Llayout_left (FORTRAN ordering)
e lLlayout_right (C ordering)

e Llayout_stride (non-contiguous memory) '
e The customization point is flexible enough to support things like

e tiled layouts

e various forms of symmetric layouts ‘

e sparse layouts

The LayoutPolicy Customization Point

e The proposal provides three layout policies: ‘
e Llayout_left (FORTRAN ordering)
e lLlayout_right (C ordering)

e Llayout_stride (non-contiguous memory) '
e The customization point is flexible enough to support things like

e tiled layouts

e various forms of symmetric layouts ‘

e sparse layouts
e compressed layouts (with the help of an AccessorPol-icy)

o The AccessorPolicy Customization Point

i

o The AccessorPolicy Customization Point |

e The AccessorPol1icy customization point provides: ‘

o The AccessorPolicy Customization Point |

e The AccessorPol1icy customization point provides: ‘
e The reference type to be returned by
basic_mdspan: :operator () |

The AccessorPolicy Customization Point

e The AccessorPol1icy customization point provides: ‘
e The reference type to be returned by
basic_mdspan: :operator () |

e The pointer type through which access occurs

The AccessorPolicy Customization Point

e The AccessorPol1icy customization point provides: ‘
e The reference type to be returned by
basic_mdspan: :operator () |

e The pointer type through which access occurs
e A function for converting a pointer and an offset into a reference

o The AccessorPolicy Customization Point

e The AccessorPol1icy customization point provides: ‘
e The reference type to be returned by
basic_mdspan: :operator () |

e The pointer type through which access occurs
e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like:

g The AccessorPolicy Customization Point

e The AccessorPol1icy customization point provides: ‘
e The reference type to be returned by
basic_mdspan: :operator () |

e The pointer type through which access occurs

e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like:

e Expose non-aliasing semantics (i.e., like restrict in C) ‘

g The AccessorPolicy Customization Point

e The AccessorPol1icy customization point provides: ‘
e The reference type to be returned by
basic_mdspan: :operator () |

e The pointer type through which access occurs

e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like:

e Expose non-aliasing semantics (i.e., like restrict in C)

e Access remote memory ‘

g The AccessorPolicy Customization Point

e The AccessorPol1icy customization point provides: ‘
e The reference type to be returned by
basic_mdspan: :operator () |

e The pointer type through which access occurs

e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like:

e Expose non-aliasing semantics (i.e., like restrict in C)

e Access remote memory ‘

e Access data stored in a compressed format of some sort

g The AccessorPolicy Customization Point

e The AccessorPol1icy customization point provides: ‘
e The reference type to be returned by
basic_mdspan: :operator () |

e The pointer type through which access occurs

e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like:

e Expose non-aliasing semantics (i.e., like restrict in C)

e Access remote memory ‘

e Access data stored in a compressed format of some sort

e Access data atomically (using PO0O19, atomic_ref!) '

std: :atomic ref

12

Atomic Operations on Non-Atomic Memory

ISO-C++ ProprosAL

std::vector<double> my_data;

atomic_fetch_add(&my_datali],)3

auto a = atomic_ref{my_datal[i]};
a +=

b

http://wg21.link/P0019

13

Atomic Operations on Non-Atomic Memory

template <class T>
void my_function(std::vector<T>& my_data, T value) {

2?2?22222?2°?

auto a = atomic_ref{my_data[i]};
a += value; |

}

Executors

. Executors: A Generic Abstraction for Execution @

(and many more...)

https://wg21.link/p0443r10

Executors: A Generic Abstraction for Execution @

(and many more...)

e Coming in C++23

https://wg21.link/p0443r10

Executors: A Generic Abstraction for Execution @

(and many more...)

e Coming in C++23
e (Why should you care about something coming that far away?)

https://wg21.link/p0443r10

Executors: A Generic Abstraction for Execution

ISO-C++ P

(and many more...)

e Coming in C++23
e (Why should you care about something coming that far away?)

e One of the most ambitious generic programming exercises ISO-C++
has ever undertaken

https://wg21.link/p0443r10

Executors: A Generic Abstraction for Execution

ISO-C++ ProPoSAL

(and many more...)

e Coming in C++23
e (Why should you care about something coming that far away?)

e One of the most ambitious generic programming exercises ISO-C++
has ever undertaken

e Provides a generic abstraction for the execution model in the presence
of a restricted programming model

o

https://wg21.link/p0443r10

” Executor Example

template <class DataContainer>
DataContainer my_algorithm(DataContainer& data) {
apply_transformation(data);

DataContainer result = allocate_result_container_for(data);
apply_reduction(data, result);
return result;

” Executor Example

apply_transformation(data);

” Executor Example

DataContainer result = allocate_result_container_for(data);

” Executor Example

apply_reduction(data, result);

” Executor Example

template <class DataContainer>
DataContainer my_algorithm(DataContainer& data) {
apply_transformation(data);

DataContainer result = allocate_result_container_for(data);
apply_reduction(data, result);
return result;

. Executor Example

template <class Executor, class DataContainer>
DataContainer my_algorithm(Executor ex, DataContainer& data) {
apply_transformation(ex, data);

DataContainer result = allocate_result_container_for(ex, data);
apply_reduction(ex, data, result);
return result;

. Executor Example

template <class Executor, class DataContainer>
DataContainer my_algorithm(Executor ex, DataContainer& data) {

. Executor Example

template <class Executor, class DataContainer>
DataContainer my_algorithm(Executor ex, DataContainer& data) {
apply_transformation(ex, data);

DataContainer result = allocate_result_container_for(ex, data);
apply_reduction(ex, data, result);
return result;

” Executor Example

template <class Executor>
DataContainer my_outer_loop(Executor network_executor) {
auto data = get_neighbor_info(network_executor);

if(data.size() > THRESHOLD) {
auto gpu_executor = get_nearest_gpu_executor (network_executor);
auto gpu_data = migrate_data(std::move(data), network_executor, gpu_executor);
auto gpu_result = my_algorithm(gpu_executor, gpu_data);
auto result = migrate_data(std::move(gpu_result), gpu_executor, network_executor);
return result;

}

else {

auto result = my_algorithm(network_executor, data);
return result;

}

}

” Executor Example

auto data = get_neighbor_info(network_executor);

” Executor Example

if(data.size() > THRESHOLD) {
auto gpu_executor = get_nearest_gpu_executor (network_executor);
auto gpu_data = migrate_data(std::move(data), network_executor, gpu_executor);
auto gpu_result = my_algorithm(gpu_executor, gpu_data);

auto result = migrate_data(std::move(gpu_result), gpu_executor, network_executor);
return result;

” Executor Example

else {

auto result = my_algorithm(network_executor, data);
return result;

}

Executor Example

if(data.size() > THRESHOLD) {

But this isn't very generic... I

” Executor Example

template <class Executor>
DataContainer my_outer_loop(Executor network_executor) {
auto data = get_neighbor_info(network_executor);

if(data.size() > THRESHOLD) { I
auto gpu_executor = get_nearest_gpu_executor (network_executor);
auto gpu_data = migrate_data(std::move(data), network_executor, gpu_executor);
auto gpu_result = my_algorithm(gpu_executor, gpu_data); ’
auto result = migrate_data(std::move(gpu_result), gpu_executor, network_executor);
return result;

}

else {

auto result = my_algorithm(network_executor, data);
return result;

¥
}

19

Executor Example

template <class Executor>
DataContainer my_outer_loop(Executor network_executor) {
auto data = get_neighbor_info(network_executor);

}

auto gpu_executor = get_nearest_gpu_executor (network_executor);

auto threshold = std::query(gpu_executor, transfer_threshold(data, network_executor));
if(data.size() > threshold) {

auto gpu_data = migrate_data(std::move(data), network_executor, gpu_executor);

}

auto gpu_result = my_algorithm(gpu_executor, gpu_data);
auto result = migrate_data(std::move(gpu_result), gpu_executor, network_executor);
return result;

else {

}

auto result = my_algorithm(network_executor, data);
return result;

" Executor Example

auto gpu_executor = get_nearest_gpu_executor (network_executor);
auto threshold = std::query(gpu_executor, transfer_threshold(data, network_executor));
if(data.size() > threshold) { i

Solution: Put the customization on the executor! I

19

Executor Example

template <class Executor>
DataContainer my_outer_loop(Executor network_executor) {
auto data = get_neighbor_info(network_executor);

}

auto gpu_executor = get_nearest_gpu_executor (network_executor);

auto threshold = std::query(gpu_executor, transfer_threshold(data, network_executor));
if(data.size() > threshold) {

auto gpu_data = migrate_data(std::move(data), network_executor, gpu_executor);

}

auto gpu_result = my_algorithm(gpu_executor, gpu_data);
auto result = migrate_data(std::move(gpu_result), gpu_executor, network_executor);
return result;

else {

}

auto result = my_algorithm(network_executor, data);
return result;

20

Executor Example

template <class Executor>
DataContainer my_outer_loop(Executor network_executor) {
auto data = get_neighbor_info(network_executor);

}

auto gpu_executor = get_nearest_gpu_executor (network_executor);
auto cost_model = std::query(my_algorithm, cost_model(network_executor, gpu_executor));
auto should_transfer = std::query(cost_model, transfer_recommendation(data));
if(should_transfer) {
auto gpu_data = migrate_data(std::move(data), network_executor, gpu_executor);
auto gpu_result = my_algorithm(gpu_executor, gpu_data);
auto result = migrate_data(std::move(gpu_result), gpu_executor, network_executor);
return result;
}
else {
auto result = my_algorithm(network_executor, data);
return result;

}

. Executor Example

auto gpu_executor = get_nearest_gpu_executor (network_executor); I
auto cost_model = std::query(my_algorithm, cost_model(network_executor, gpu_executor));

auto should_transfer = std::query(cost_model, transfer_recommendation(data)); i
if(should_transfer) {

Even better: ask the algorithm! I

, Executor Example

template <class Executor>
DataContainer my_outer_loop(Executor network_executor) {

20

Executor Example

template <class Executor>
DataContainer my_outer_loop(Executor network_executor) {
auto data = get_neighbor_info(network_executor);

}

auto gpu_executor = get_nearest_gpu_executor (network_executor);
auto cost_model = std::query(my_algorithm, cost_model(network_executor, gpu_executor));
auto should_transfer = std::query(cost_model, transfer_recommendation(data));
if(should_transfer) {
auto gpu_data = migrate_data(std::move(data), network_executor, gpu_executor);
auto gpu_result = my_algorithm(gpu_executor, gpu_data);
auto result = migrate_data(std::move(gpu_result), gpu_executor, network_executor);
return result;
}
else {
auto result = my_algorithm(network_executor, data);
return result;

}

. Executor Example

What happens if | have a network-capable GPU direct executor? |

void my_program() { i
auto gpu_direct_executor =

for(auto iter : my_iterations) {

auto result = my_outer_loop(gpu_direct_executor);

. Executor Example

What happens if | have a network-capable GPU direct executor? |

auto gpu_direct_executor =

auto result = my_outer_loop(gpu_direct_executor); |

. Executor Example

What happens if | have a network-capable GPU direct executor? |

void my_program() { i
auto gpu_direct_executor =

for(auto iter : my_iterations) {

auto result = my_outer_loop(gpu_direct_executor);

22

How does this change how you should write
code?

How does this change how you should write
code?

e Use algorithms, not loops g

- How does this change how you should write
code?

e Use algorithms, not loops g
e Write to the most restricted programming model you can

- How does this change how you should write
code?

e Use algorithms, not loops g
e Write to the most restricted programming model you can
e Use Kokkos (or something similar that is tracking standards for you)

Questions?

