
Grid Services for MPI

Camille Coti† Thomas Herault‡ Sylvain Peyronnet‡
coti@lri.fr herault@lri.fr syp@lri.fr

Ala Rezmerita‡ Franck Cappello†
rezmerit@lri.fr fci@lri.fr
†INRIA, F-91893 Orsay France

‡Univ Paris Sud; LRI; INRIA; F-91405 Orsay France

Abstract
Institutional grids consist of the aggregation of clusters

belonging to different administrative domains to build a sin-
gle parallel machine. To run an MPI application over an
institutional grid, one has to address many challenges. One
of the first problems to solve is the connectivity of the differ-
ent nodes not belonging to the same administrative domain.
Techniques based on communication relays, dynamic port
opening, among others. have been proposed. In this work,
we propose a set of Grid or Web Services to abstract this
connectivity service, and we evaluate the performances of
this new level of communication for establishing the con-
nectivity of an MPI application over an experimental grid.

1 Introduction
In order to build very large systems, some institutions

are willing to share their computing resources. This leads

to parallel machines consisting of multiple clusters belong-

ing to different administrative domains. Still, end users and

programmers would like to deal with these systems in ways

that are natural for traditional parallel machines. One ex-

ample of such a behavior is to try to run an MPI application

on instiutional grids. This is a challenge since administra-

tive domains are not supposed to communicate easily. Se-

curity policies imply the installation of firewalls to protect

the parallel application from outside attacks, like denial of

service. This paper proposes connectivity methods for MPI

processes running on nodes belonging to distinct adminis-

trative domains.

We present our implementation of the modified Open-

MPI library and runtime environment originally adapted for

the European project QosCosGrid. This implementation

is called QCG-OMPI, standing for QosCosGrid-OpenMPI.

The QosCosGrid project is concerned with grid environ-

1This work was partly supported by the EC grant for the QosCosGrid

project (grant number: FP6-2005-IST-5 033883)

ment for Quasi-Opportunistic Complex Systems Simula-

tion. This project is described in [13]. [3] describes the

QosCosGrid framework from its usecases’ point of view.

In order to provide this framework, several changes to

the OpenMPI library and runtime environment have to be

done. Developers will describe their communication pat-

terns in order to let the system provide adequate resources

for achieving performant use of the institutional grid; tra-

ditional grid tools will be used to provide access to the re-

sources with single signon and certificate based authentica-

tion.

The first goal to achieve, and which is described in

this work, is to grid-enable the OpenMPI runtime environ-

ment and library. Even if OpenMPI provides many use-

ful features for running over a Grid such as heterogeneous

CPUs compatibility, and multiple network interfaces han-

dling chosen at runtime, it is still a challenge to port it over

an institutional grid, mainly because of firewalls and com-

plex network configurations.

The main contributions of this work are: A runtime envi-

ronment to deploy an OpenMPI application over an institu-

tional grid; Implementation and evaluation of Inter clusters

communication and brokering services (ICCBS) for com-

munications of the runtime environment and the library;

and Integration of this ICCBS into the OpenMPI library and

runtime environment.

The structure of the paper is as follows. We first present

works related to our (section 2). Then we give in section 3

some insights about the architecture of our implementation.

Mainly we describe the set of services we designed and how

we integrated it within the OpenMPI library and the runtime

environment. Section 4 is dedicated to the presentation of

connectivity methods that allow nodes from distincts ad-

ministrative domains to communicate. Last, in section 5,

we present an experimental evaluation of our implementa-

tion and compare its performances to those obtained with

OpenMPI without grid support and MPICH-G2.

Eighth IEEE International Symposium on Cluster Computing and the Grid

978-0-7695-3156-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CCGRID.2008.106

417

2 Related works
Several implementations of the MPI-2[9] standard are

available, among them, one can distinguish two main open-

source projects: MPICH[11] and OpenMPI[7]. The latter

has been grid-enabled by the MPICH-G project [12] using

the Globus toolkit [6] (GT). GT is a toolkit that aims to pro-

vide a set of software for an efficient use of grids. MPICH

has been adapted to use the features of Globus in order to

make an intensive use of the available resources for MPI

applications. The launching process of an application uses

Globus’s features. The latest version is MPICH-G2, based

on MPICH-1.2.7p1. MPICH implements the MPI-1.1 stan-

dard. MPICH-G2 uses Globus tools to allocate, spawn and

manage jobs, and redirect standard input and outputs. De-

tection of the physical topology allows building topology-

aware communicators. The general-purpose communicator

can be split to create new communicators sharing the same

network for a given depth. However, the application has to

adapt its paralelization to the given topology at runtime.

MPICH-G2 can be used across several administrative

domains, if firewalls are configured to have a specific range

of open ports. Globus can be configured to use only those

ports. But it does not include any firewall nor NAT bypass-

ing, which is one of the features of our implementation. An-

other drawback of MPICH-G2 is its complex architecture.

It uses an important number of external services, thus the

startup time is an important phase of jobs’ lifecycle; there-

fore MPICH-G2 is more performant on long applications.

PACX-MPI[8] is another grid-oriented MPI implemen-

tation. It was initially developed to interconnect two vendor

parallel machines with their own vendor-based MPI imple-

mentation. It can also be used with clusters, allowing ag-

gregating machines to form a meta-computer. It uses com-

munication daemons that forward inter-cluster communica-

tions. It can be used across multiple administrative domains

if the firewall allows at least one open port for the daemon

communications. It can be a solution to bypass NAT if the

daemons are located on the NAT server. But it does not pro-

vide any other firewall-bypassing feature. PACX-MPI can

be configured for Globus compliance in order to use the GT

mechanisms. It implements MPI-1.2 standard and some of

MPI-2 standard.

Interoperable MPI (IMPI)[10] is a standard protocol for

connecting multiple instances on MPI. It is used in the

Japanese project GridMPI[1] [15], which is a grid-oriented

implementation of the MPI-1.2 standard and most of MPI-2

features for high-performance MPI computing on multiple

clusters. The latest public release of GridMPI is version

1.1. It does not support NAT, and requires global IP address-

ing. The IMPI standard limits the maximum number of MPI

jobs to 32. Therefore, it is not adapted to large-scale com-

puting. Moreover, GridMPI does not allow the use of het-

erogeneous environments because of different precision in

� � � � � � �

� 	
 � �
 � � � �

� � � �
 � � � � �

�
 	 �
 �

� � � � � � � � � � �

� 	
 � �
 � � � �

� � � �
 � � � � �

�
 	 �
 �

� � � �
 � � � � �

�
 	 �
 �

� � � � � � �

� � � �
 � � � � �

�
 	 �
 � � � � �
 � � � � �

�
 	 �
 �

� � � �
 � � � � �

�
 	 �
 �

� 	
 � �
 � � � �

� 	
 � �
 � � � �

� 	
 � �
 � � � �

� 	
 � �
 � � � �

Figure 1. Inter-cluster communication ser-
vices

floating point and 32/64 bits support, whereas OpenMPI al-

lows heterogeneous 32/64 bits representation, and can han-

dle more complex shiftings between different architectures.

3 Architecture
In this section, we first describe the set of services that

were designed to help spawn and manage an MPI applica-

tion spanning above multiple administrative domains, then

we explain how these services have been integrated within

the OpenMPI library and runtime.

Figure 1 presents a global picture of the architecture,

across two administrative domains. Domains must be

reachable one from the other, at least through gateway

nodes, on which we run a first component, the Front-end

component. In addition to services running on each admin-

istrative domain, we use two services that can be hosted

by any administrative domain, namely the Broker and one

or multiple proxies. The Broker service must be reachable

from any Front-end component and the Proxy service must

be reachable from any node. On all nodes of each admin-

istrative domain, we also use a connection helper service

that is connected to the frontal service. The complete set of

services builds a single connected component.

These services are provided as part of the infrastructure

of the grid. This makes the weight of the runtime environ-

ment lighter, reducing the startup time of the application

and improving its scalability.

All the services are implemented using the lightweight

web-services engine gSOAP[4].

3.1 The Broker
The broker service is a centralized service running on

only one machine in the grid and accepting incoming con-

nections from frontal components.

The brokering service provides a way to communicate

between nodes located in the same administrative domain

and between nodes that would not be able to establish

418

connections with each other otherwise, because of a NAT

and/or a firewall.

To do this, the broker receives, from frontal service, the

local cluster configuration. A cluster may be open on a port

range, or authorize firewall bypassing techniques, or com-

pletely closed (in which case the only way to communicate

with the cluster nodes is through a relaying technique).

In addition of collecting all the local configurations, the

brokering service centralizes all processes contact infor-

mation. This process contact information corresponds to

the OpenMPI process unique identifier called process name

(presented in Section 3.5) and the process access point (the

public IP address of the node where the process is executed

and the port number on which the process listens for incom-

ing connections). The broker’s global contact list is filled

by every OpenMPI process and takes place every time an

OpenMPI process creates an access point.

Each time the OpenMPI process wants to establish a

communication with another OpenMPI process, it invokes

the brokering service through connection-helper and frontal

services. Cross checking all local configurations, the broker

finds what technique is best fitted to establish the requested

connection.

If a direct connection is possible between the OpenMPI

processes, the brokering service returns the appropriate con-

tact information to the initiator of the connection. Other-

wise, the broker informs the frontal and connection-helper

components that they must help OpemMPI process to apply

the appropriate relaying technique. If both direct connec-

tion and relaying connection are possible, the direct con-

nection is privileged.

3.2 The Front-end

The frontal service is running on a front-end machine of

each cluster. It is connected to the brokering service and it

accepts connections from connection-helper components.

During the update of nodes contact list and the initi-

ation of connection establishment between two OpenMPI

processes, the frontal service relays messages between the

proxy service and the connection-helper. This hierarchical

communication pattern provides scalability to the architec-

ture, with a small cost on latency to connect to the Broker.

3.3 Connection-helper

The connection-helper service runs on every node. The

goal of this component is to help OpenMPI process to estab-

lish the connection with another process by relaying mes-

sages between OpenMPI process and the frontal service be-

fore the connection establishment.

This component also plays very important role in the

connection establishment using proxy and traversing-tcp

techniques that will be described in more detail in the next

section.

3.4 The Proxy

We assume that every QCG-OMPI process and every

cluster node can access this service directly.

The proxy service is a service running on one or many

machines in the grid and accepting incoming requests from

the broker service.The goal of this service is to relay mes-

sages between nodes that are not able to establish a direct

connection with each other.

Multiple proxy processes can be launched independently

on the grid (as long as they are accessible from any point in

the grid). The brokering service balances the load between

all the available proxy services using a simple round-robin

heuristic.

3.5 OpenMPI

OpenMPI startup is initiated by a first process (called

seed daemon), which spawns processes on all the machines

that will be used for the computation. Those processes are

daemonized and keep running during all the execution, and

beyond if requested. This set of daemons builds the runtime

environment of OpenMPI. It supports the execution of the

MPI application. Once all the daemons are initialized and

ready, they locally spawn the MPI processes.

We support the execution of applications through a set

of services which form an extension of the runtime environ-

ment that is part of the grid infrastructure. The purpose of

this set of services is to deal with the issues raised by MPI

computing on grids. The MPI library is interfaced with the

services exhibited by the grid infrastructure in order to take

advantage of it. Therefore the library becomes a client of

those services.

Moreover, the runtime environment of the application

also needs to communicate. Some communications might

need some help from the services. For example, each local

daemon opens a connection with the seed process during

the initialization phase. Cross-domain computation require

runtime-level cross-domain communications, and then need

to use the brokering service. Thus, the local daemons are

clients of the grid services too.

The initialization procedure of OpenMPI includes a

phase in which processes exchange with each other some

information through a campaign of many-to-one exchanges.

Each OpenMPI runtime daemon, and each OpenMPI pro-

cess sends its contact information to a central repository,

which then broadcasts the whole contact informations to

all. On large-scale systems and grids, those informations

are provided on demand, only when a process needs them,

for scalability reasons.

The broker knows the common communication media

between two processes, and can provide them with the most

efficient way to communicate with each other

419

4 Connectivity
The main issue we address here is how to let processes

belonging to different administrative domains communicate

efficiently. Administrative domains (AD) have firewall poli-

cies to protect themselves from the outside, including the

others AD of the same grid. When two processes belong-

ing to two different AD need to communicate one with the

other, the AD have to change their firewall policy, or fire-

wall bypassing techniques must be used.

Traditionaly, firewalls are configured so that outbound

connections are authorized and inbound connections are

blocked except for some specific ports such as the SSh port.

Most of the time, connectivity constraints limit the exe-

cution of parallel application on multiple sites. Connectiv-

ity problems can sometimes be solved when only one site

uses a firewall: in this case, all the required connections

are initiated from the firewalled site. However this solution

implies modifications of applications or communication li-

braries changes. Moreover, if all sites are using firewalls

this approach can no longer be applied. Another solution

that can be used in order to solve connectivity problems is

to configure the firewalls in order to open a port range and

adapt the applications to use only theses port. However this

solution is a threat to the site security.

Another problem that is encoutered is the so-called

IPv4 address space problem. Network Address Translation

(NAT) was introduced as a short term solution for solving it.

Indeed, the solution is a new Internet protocol with a larger

address space, namely IPv6. However, IPv6 deployment is

progressing very slowly, so NATs still provide a valuable

service.

In the rest of the section, we first describe basic tech-

niques that address connectivity problems, then we present

complex methods that allow connection through firewalls,

thus solving the connectivity problems without threatening

the security of the network.

4.1 Basic techniques
In the following we present some techniques that provide

a framework for solving connectivity problems.

4.1.1 Direct Connection
The brokering service provides a way to communicate be-

tween nodes, storing all local configurations and all nodes

access point. A contact list is filled when the OpenMPI pro-

cess creates a new access point, i.e. OpenMPI process lis-

tens on a new port for incoming connections.

When the OpenMPI process on node A is willing to com-

municate with the OpenMPI process on node B, it invokes

the brokering service through connection-helper and frontal

services. As result of this new connection request, if node

A is able to contact directly node B, the brokering service

returns node B’s contact point to node A.

� � � � � � � � � � �

	
 � �

� � � � � � � � � �

� � � � � �

� � � � � �

� � � � � � � � � � �

	
 � � �

� � � � � � � � � �

� � � � � �

� � � � � � �

Figure 2. Connection between nodes belong-
ing to the same cluster

Figure 4.1.1 shows the case when the two processors

nodes A and B are located in the same cluster (there is no

firewall connectivity restriction between them). Node A in-

vokes the brokering service, asking to locate node B. The

brokering service returns B’s access point (IP address and

port) allowing node A to open a direct connection to node

B. When the frontal service receives from the broker service

B’s access point, it caches this information before forward-

ing it to the connection-helper.

Using this caching scheme, a process that issues the

same request later will find this information closer.

If direct connection between two nodes is not possible

(e.g. they are located in different administrative domains

and there is a firewall connectivity restriction), the broker-

ing service informs the frontal and the connection-helper

about this restriction, meaning that the initiator of the con-

nection must be helped in order to establish connection with

distant node using relaying or Traversing TCP techniques,

presented below.

4.1.2 Port Range technique
In case an open port range for incoming connections is

available on the firewall of the grid site, the runtime en-

vironment ensures that all sockets used for incoming con-

nections in this site are bound to a port in this range, thus

guaranteeing that all the nodes located inside this site can be

directly contacted from other sites. The OpenMPI process

is informed about the known port range through Modular

Component Architecture (MCA) parameters.

4.1.3 Relaying
The most reliable connectivity method implemented in

QCG-OMPI is relaying. This technique is designed for the

nodes that reside in different administrative domains, and

that are such that their respective Firewall/NATs prevent ei-

ther node from directly initiating a connection to the other.

Relaying always works as long as both cluster nodes can

connect to the proxy server. Instead of attempting a direct

connection, the two nodes can simply use the proxy server

to relay messages between them.

Its main drawbacks reside in its consumption of the

proxy server’s processing power and network bandwidth,

420

and the induced communication latency between the nodes.

Nevertheless, since there is no technique more efficient that

works reliably on all existing firewall/NATs, relaying is a

useful strategy.

When a node A needs to communicate with a node B in

a remote cluster, it contacts its local connection-helper and

requests it to provide a way to communicate with node B

. Connection-helper forwards the connection demand to its

frontal component. The frontal component then forwards

the request to the broker component.

Once the new connection request is received, the bro-

ker asks the proxy service to create a new unique identi-

fier (UID) for this new connection. Once the UID received,

the broker notifies node A’s frontal and node B’s frontal.

Both frontals will forward the message to the corresponding

connection-helper process. Node A’s and B’s connection-

helpers will give the MPI library the proxy address and the

UID of the connection. Finally, node A and node B es-

tablish a direct connection with the proxy service that will

perform the matchmaking between the nodes using the con-

nection UID. To communicate with node B, node A sends

the message to proxy server along its already-established

client/server connection, and the proxy server forwards the

message on to node B using its existing client/server con-

nection with B.

4.2 Firewall traversing techniques
To enable communications between nodes located in dif-

ferent administrative domains, other techniques have been

integrated in the service to increase the efficiency of the tar-

geted grid, without reducing its security policy. We describe

here the technique Traversing-TCP that have been proposed

recently in [14].

4.2.1 Traversing TCP
Traversing TCP is derived from the TCP protocol and it

works with firewalls that are not running stateful packet in-

spection. It essentially consists in transporting, using the

broker, the initiating TCP packet (SYN) blocked by the fire-

walls or NAT on the server side and injecting the packet in

the server IP stack. This technique is presented in [14].

5 Experimental results
In this section we present the performance measure-

ments of our implementation. We conducted the experi-

ments on two classical platforms of high performance com-

puting: clusters of workstations with GigaEthernet network

and computational grids. These experiments were done on

the experimental Grid5000 platform or some of its compo-

nents.

5.1 Experimental Platform
Grid5000 [5] is a physical platform featuring 13 clusters,

each with 58 to 342 PCs, connected by the Renater French

Education and Research Network. Grid5000 is a computer

throughput in QCG-OMPI QCG-OMPI QCG-OMPI

Mb/s direct proxy traversing

Intra-Cluster 894.39 894.37 894.36

Orsay-Rennes 118.48

Orsay-Bordeaux 136.08 76.40 138.18

Bordeaux-Rennes 131.68

Table 1. Bandwidth comparison for all QCG-
OMPI techniques (in Mb/s)

science project dedicated to the study of grids, and founded

by the French government through the ACI Grid incentive

action.

At the time we write this article, it gathers 1571 com-

puters featuring four architectures (Itanium, Xeon, G5 and

Opteron) distributed into 13 clusters over 9 cities in France.

For the two families of measurement we conducted

(cluster and grid), we used only homogeneous clusters with

AMD Opteron 248 (2.2 GHz/1MB L2 cache) bi-processors

running at 2GHz. This includes 3 of the 13 clusters of

Grid5000: the 93-nodes cluster at Bordeaux, the 312-nodes

cluster at Orsay, a 99-nodes cluster at Rennes. Moreover,

each node features 20GB of swap and SATA hard drive.

Nodes are interconnected by a Gigabit Ethernet switch.

One of the major feature of the Grid5000 project is the

ability for the user to boot all the computing nodes booked

for her job into her own environment (including the operat-

ing system, distribution, libraries...). We used this feature

to run all our measurements in an homogeneous environ-

ment. All the nodes were booted under linux 2.6.18.3. The

tests and benchmarks are compiled with GCC-4.0.3 (with

flag -O3). All tests are run in dedicated mode.

5.2 Latency and Bandwidth
First, we compare the latency and bandwidth of all con-

nectivity techniques of our implementation with the two ref-

erence implementations: MPICH-G2 and OpenMPI with-

out Grid features. To pursue this measurement, we used

a simple ping-pong benchmark to compute the round time

trip of messages of size 1 byte (for latency) and messages of

size 10 Mbytes (for bandwidth). We used a grid composed

of 3 clusters, each cluster holding 2 nodes. All values are

summed up on tables 2 and 1. Values presented are mean

values with a standard deviation less than 1%.

Table 2 presents the measured latencies. Values between

any two pair of nodes were similar, so we present only

this summed-up version. As expected, one can see that the

intra-cluster communications are orders of magnitude lower

than inter-cluster communications, for every implementa-

tion. MPICH-G2 presents a latency higher than the Open-

MPI based implementations. This is due to the improve-

ment of latencies in MPI implementations (MPICH and

OpenMPI) since the version of MPICH on which MPICH-

G2 is based.

For inter-cluster communications, direct and traversing

techniques perform similarly to the MPICH-G2 implemen-

421

times in MPICH-G2 OpenMPI QCG-OMPI QCG-OMPI QCG-OMPI

seconds direct proxy traversing

Intra-Cluster 0.0002 0.0001 0.0001 0.0001 0.0001

Orsay-Rennes 0.0104 0.0103 0.0103 0.0106 0.0103

Orsay-Bordeaux 0.0079 0.0078 0.0078 0.0084 0.0078

Bordeaux-Rennes 0.0081 0.0080 0.0080 0.0287 0.0080

Table 2. Latency comparison for all tech-
niques (in seconds)

tation and the OpenMPI without grid support implementa-

tion. Since both MPICH-G2 and direct technique rely on

opened ports, this is to be expected. For the traversing tech-

nique, one has to notice that the cost of connecting to the

broker and inversing the connections are due at connection

time only. Because the measurement begins only after the

first connections is already established, this is transparent

for the sustained latency achieved.

For the proxy technique, one can see that we measure

a low overhead for inter-cluster communications between

Orsay and Rennes and between Orsay and Bordeaux, but a

significant overhead between Rennes and Bordeaux. This

is due to the fact that in this experiment, we used a single

relay for all communications, and this relay was located in

the Orsay cluster.

Table 1 presents the measured bandwidths. As for la-

tencies, we present only the summed-up version. Due to

a hardware failure, we lost the Rennes cluster during our

experiments, this is why the measurements including this

cluster are not complete at the time we submit this pa-

per. As expected, one can observe that the intra-clusters

bandwidth is optimal, whatever technique is used. Inter-

clusters bandwidths are optimal for direct and traversing

techniques (since traversing technique only impact perfor-

mances at startup time). The only technique that impact sig-

nificantly the performances is the proxy technique, where

the proxy network card is quickly saturated by all streams

flowing through it.

5.3 Startup Time
Figure 3 presents the startup time of MPI applications

for each of the compared implementations. The startup is

measured as the time elapsed between the launching of the

mpiexec command and the last exit of MPI Init() calls. The

connectivity technique used for the QCG-OMPI implemen-

tation was the direct technique. We used a single cluster (at

Orsay) to evaluate the scalability of the startup. Because

of connections between the runtime environment daemons,

one can expect a latency and a startup time slightly slower

with the proxy technique. However, the latencies measured

in the previous experiment demonstrate that this would have

a non-measurable impact on the performances of the startup

time.

The MPICH-G2 implementation presents a startup time

significantly slower and with a higher slope than the three

other implementation. This is mainly due to the number of

 0

 50

 100

 150

 200

 0 50 100 150 200 250

tim
e

(s
)

procs

MPICH-g2
MPICH 1.2.7

QCG-OMPI
OpenMPI 1.3a1

Figure 3. Startup time as function of the num-
ber of processors: QCG-OMPI vs. MPICH-G2
vs. OpenMPI

globus services which have to be started before the MPICH-

G2 implementation can begin its work. Compared to our

implementation MPICH-G2 provides more security func-

tionalities through GSI, uses GRAM to startup each job,

etc... This introduces a significant overhead in the startup

time.

The startup phase of OpenMPI uses a set of all gather /

broadcast to gather and distribute the contact information

and setup the parallel application. When the number of

nodes increases, the network becomes saturated with this

contact informations and this introduces a bottleneck in the

startup phase. With the QCG-OMPI implementation, this

bottleneck appears sooner because the contact information

is encapsulated for a significant part in web services, and

thus occupies more space to be transfered on the network.

5.4 Benchmark Applications
There are currently no MPI application acknowledged

by the community to benchmark the Grid. Most of the MPI

applications assume an homogeneous network, and rely on

this property to recover communications with computation.

Although it is the goal of the QosCosGrid project to de-

sign MPI applications for the Grid, those applications are

not ready to experiment with at this time. So, in order to

validate our implementation and evaluate its overall perfor-

mances on high-level applications, we use the traditional

NAS benchmark suite [2], even if most of these benchmark

do not scale well on heterogeneous platforms.

On each experiment, we distributed the number of used

nodes (3/5 at Orsay, 1/5 at Rennes and 1/5 at Bordeaux).

For all experiment using the proxy technique, we used a

single proxy, located in the Orsay cluster. Ranks were as-

signed first to Orsay, then to Rennes and to Bordeaux. For

example, an experiment with 25 nodes presents 15 nodes in

Orsay (ranks 0 to 14), 5 nodes in Rennes (ranks 15 to 19)

and 5 nodes in Bordeaux (ranks 20 to 24).

First, we evaluate the overhead of grid-enabling the MPI

422

Direct Traversing Proxy OpenMPI
0

50

100

150

200

250

300

350

400

450

500

T
im

e
(s

)
CG C 64
CG C 128

Figure 4. CG class C: execution time of QCG-
OMPI and OpenMPI

library and runtime environment, comparing the three con-

nectivity techniques to a reference time obtained with Open-

MPI without grid support. To do this, we run the Con-

jugate Gradiant benchmark (CG) of class C with 64 and

128 nodes. The measurements presented in figure 4 are

mean values measured for OpenMPI without grid support

and QCG-OMPI with all techniques. Standard deviation is

less than 4%.

CG is a latency-bounded benchmark: processes commu-

nicate using lots of small messages. Figure 4 shows that it

doesn’t scale well: excepted for proxy technique, execution

takes longer with 128 processes than with 64 processes.

This slowdown is due to the fact that communications

are no more overlapped by computation. Computation is

shorter because of a finer-grain decomposition of the prob-

lem while communications suffer from a higher latency be-

cause of a network flood.

Using a proxy for inter-cluster communications intro-

duces an extra hop, then increases the latency, and a band-

width bottleneck. But this communication is not concerned

by the intra-cluster network flood. Therefore, the inter-

cluster latency added by the extra hop is overlapped by the

latency due to the network flood, and the bandwidth bottle-

neck has a smaller impact because latency is the limiting

factor of this application.

At smaller scale, inter-cluster communications through

the proxy are not overlapped by intra-cluster communica-

tions nor computation and are slowing the execution down.

Now, we evaluate the scalability of our techniques, us-

ing the BT benchmark. We present in figure 5 the mean

execution time of BT for different nodes size and different

connectivity techniques.

As expected, the proxy method induces the highest over-

head on the execution of an MPI application. The overhead

caused by Traversing TCP is visible only when the connec-

tions are being established, so Traversing TCP and direct

connection methods are equivalent once the connections are

established. Since our benchmarks does not include con-

nection establishment in the measurments, these two tech-

niques show equivalent performances.

25 36 49 64 81 100 121 144 169

#nodes

0

100

200

300

400

500

C
om

pl
et

io
n

tim
e

(s
)

Direct
Proxy
Traversing

Figure 5. BT class C: mean execution time for
the three QCG-OMPI connectivity techniques

A main characteristic of the BT benchmark is its high

overlapping of communication by computation, so even

running on a grid with high latency, the application still

scales with the number of nodes. However, since messages

are quite long, when using the proxy technique, the bottle-

neck of the proxy clearly impacts the performances.

6 Conclusion and future works
In this paper, we addressed the problem of grid-enabling

the OpenMPI library for cluster of administrative domains.

The main task we achieved is to provide complex and

efficient inter-cluster connectivity techniques, which can

span many different situations (ranging from the completely

opened network to a network completely closed using fire-

walls and NATs).

We evaluated our implementation, and compared the ef-

ficiency of the different techniques to the state-of-the-art

MPICH-G2 implementation; we also compared our perfor-

mances with the base implementation of OpenMPI. These

results demonstrated the fact that we can use with small

overhead in latency and bandiwdth a cluster of clusters be-

longing to different administrative domains as a parallel ma-

chine.

Real experiments using BT and CG acknowledge this re-

sult. The new implementation has improved significantly

the startup time as compared to MPICH-G2, by defining

specific dedicated services to launch the application and

provide connectivity techniques.

Within the QosCosGrid project, this implementation will

be used as the base for the design and evaluation of applica-

tions fitted to the Grid.

Acknowledgements
Experiments presented in this paper were carried out us-

ing the Grid’5000 experimental testbed, and initiative from

the French Ministry of Research through the ACI GRID

incentive action, INRIA, CNRS and RENATER and other

contributing partners.

Part of the authors are founded through the QosCosGrid

European Project (grant number: FP6-2005-IST-5 033883).

423

References

[1] GridMPI: http://www.gridmpi.org.

[2] D. Bailey, T. Harris, W. Saphir, R. V. D. Wijngaart, A. Woo,

and M. Yarrow. The NAS Parallel Benchmarks 2.0. Report

NAS-95-020, Numerical Aerodynamic Simulation Facility,

NASA Ames Research Center, 1995.

[3] M. Charlot, G. D. Fabritis, A. G. de Lomana, A. Gomez-

Garrido, and D. G. et al. The QosCosGrid project: Quasi-

opportunistic supercomputing for complex systems simu-

lations. Description of a general framework from different

types of applications. In Ibergrid 2007 conference, Centro
de Supercomputacion de Galicia (GESGA), 2007.

[4] R. A. V. Engelen and K. A. Gallivan. The gSOAP toolkit for

web services and peer-to-peer computing networks. In CC-
GRID ’02: Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, page 128,

Washington, DC, USA, 2002. IEEE Computer Society.

[5] F. Cappello et al. Grid’5000: a large scale, reconfigurable,

controlable and monitorable grid platform. In proceedings
of IEEE/ACM Grid’2005 workshop, Seattle, USA, 2005.

[6] I. T. Foster. Globus toolkit version 4: Software for service-

oriented systems. J. Comput. Sci. Technol, 21(4):513–520,

2006.

[7] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-

garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,

A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,

and T. S. Woodall. Open MPI: Goals, concept, and design

of a next generation MPI implementation. In Proceedings,
11th European PVM/MPI Users’ Group Meeting, pages 97–

104, Budapest, Hungary, September 2004.

[8] E. Gabriel, M. M. Resch, T. Beisel, and R. Keller. Dis-

tributed computing in a heterogeneous computing envi-

ronment. In V. N. Alexandrov and J. Dongarra, editors,

PVM/MPI, volume 1497 of Lecture Notes in Computer Sci-
ence, pages 180–187. Springer, 1998.

[9] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. L.

Lusk, W. Saphir, A. Skjellum, and M. Snir. MPI-2: Extend-

ing the message-passing interface. In L. Bougé, P. Fraigni-

aud, A. Mignotte, and Y. Robert, editors, Euro-Par, Vol. I,
volume 1123 of Lecture Notes in Computer Science, pages

128–135. Springer, 1996.

[10] W. L. George, J. G. Hagedorn, and J. E. Devaney. IMPI:

Making MPI interoperable, Apr. 25 2000.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-

performance, portable implementation of the MPI message

passing interface standard. Parallel Computing, 22(6):789–

828, September 1996.

[12] N. T. Karonis, B. R. Toonen, and I. T. Foster. MPICH-G2:

A grid-enabled implementation of the message passing in-

terface. CoRR, cs.DC/0206040, 2002.

[13] V. Kravtsov, D. Carmeli, A. Schuster, B. Yoshpa, M. Silber-

stein, and W. Dubitzky. Quasi-opportunistic supercomput-

ing in grids, hot topic paper. In IEEE International Sym-
posium on High Performance Distributed Computing, Mon-

terey Bay California, USA, 2007.

[14] A. Rezmerita, T. Morlier, V. Néri, and F. Cappello. Private

virtual cluster: Infrastructure and protocol for instant grids.

In W. E. Nagel, W. V. Walter, and W. Lehner, editors, Euro-
Par, volume 4128 of Lecture Notes in Computer Science,

pages 393–404. Springer, 2006.
[15] R.Takano, M.Matsuda, T.Kudoh, Y.Kodama, F.Okazaki, and

Y.Ishikawa. Effects of packet pacing for MPI programs in

a grid environment. In 2007 IEEE International Confer-
ence on Cluster Computing (CLUSTER 2007) (9th CLUS-
TER’07). IEEE Computer Society, Dec. 2007.

424

