L v AR Y

ICL Lunch Talk
November 292018

Machine Learning-Aided Numerical Linear Algebra:
Convolutional Neural Networks for the Efficient Preconditioner Generation®

Markus Gotz, Hartwig Anzt

"Machine Learning-Aided Numerical Linear Algebra: Convolutional Neural Networks for the Efficient Preconditioner Generation,”
accepted at ScalA’18: 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems WS at SC18.

LICL
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

I D AN Y

Motivation: Block-Jacobi Preconditioning

Jacobi method based on diagonal scaling: P — diag(A) .

Can be used as iterative solver:
g F D) = ¢ p=lp — p=1 g

~

Can be used as preconditioner: A = P_lA, b= P 1

Ar =be Az = b

N\

Y/ //

N &

)
s

J
-
I
I

[

> Motivation: Block-Jacobi Preconditioning

« Jacobi method based on diagonal scaling: P — diag(A)
* Canbe used asiterative solver:
gF D) = 20 p=1p — p=1 Az)

~

« Canbe used as preconditioner: A = P_IA, B — P~ 1p.
Ar=b< Az =b

« Block-Jacobi is based on block-diagonal scaling: P — dz’agB (A)
* Large set of small diagonal blocks.
* Eachblock corresponds to one (small) linear system.
* Larger blocks typicallyimprove convergence.

* Larger blocks make block-Jacobi more expensive.

Extreme case: one block of matrix size.

https://science.nasa.gov/earth-science/focus-areas/earth-weather

. L v AR Y

q

> Motivation: Block-Jacobi Preconditioning

/ |
« Jacobi method based on diagonal scaling: P — diag(A)
e Canbe used asiterative solver:
_ _ https://science.nasa.gov/earth-science/focus-areas/earth-weather
2B = 2) 4 p=lp _ p=1 gy o

Extract diagonal block from
sparse data structure.

~

« Canbe used as preconditioner: A = P_IA, b= P 1

Az =be Az = b

« Block-Jacobi is based on block-diagonal scaling: P — d@'agB (A)

* Large set of small diagonal blocks.

@ Invert diagonal block.

* Eachblock corresponds to one (small) linear system.

* Larger blocks typicallyimprove convergence.

e Larger blocks make block-Jacobi more expensive. | e) Insert inverse as diagonal block

. . . e '55 into preconditioner matrix.
Extreme case: one block of matrix size. , ..

. L v AR Y

§

> Motivation: Block-Jacobi Preconditioning

How do we determine efficient diagonal blocks?
https://science.nasa.gov/earth-science/focus-areas/earth-weather
e Strongly connected components. L
* \Variables associated to same discretization element. g

. L v AR Y

§

> Motivation: Block-Jacobi Preconditioning

How do we determine efficient diagonal blocks?

https://science.nasa.gov/earth-science/focus-areas/earth-weather
* If we know the discretization method, information is available. —
* What if the problem’s origin / discretization scheme is unknown? N I

. L v AR Y

§

> Motivation: Block-Jacobi Preconditioning

How do we determine efficient diagonal blocks?

https://science.nasa.gov/earth-science/focus-areas/earth-weather
* If we know the discretization method, information is available. —
* What if the problem’s origin / discretization scheme is unknown? N

e Clustering algorithms (Big Data analytics)

|II

“work wel
“extremely expensive”

. L v AR Y

k

Motivation: BIock—Jacobl Preconditioning

How do we determine efficient diagonal blocks?

https://science.nasa.gov/earth-science/focus-areas/earth-weather
* If we know the discretization method, information is available. —
* What if the problem’s origin / discretization scheme is unknown? B Y

Clustering algorithms (Big Data analytics)
“work well”
“extremely expensive”

e Supervariable agglomeration:
“stat-of-the-art” X
“works somewhat well” X
1. detect rows with same pattern
2. accumulate to block size bound (4)

X

X X
X X
X X X X
X X

. v AR Y

k Motivation: BIock—Jacobl Preconditioning

How do we determine efficient diagonal blocks?
https://science.nasa.gov/earth-science/focus-areas/earth-weather
* If we know the discretization method, information is available. —

* What if the problem’s origin / discretization scheme is unknown?

Clustering algorithms (Big Data analytics)
|II

“work wel
“extremely expensive”

e Supervariable agglomeration:
“stat-of-the-art” X
“works somewhat well” X
1. detect rows with same pattern
2. accumulate to block size bound (4)

X
XX X

X
X
X X X
X X X X

. v AR Y

k Motivation: BIock—Jacobl Preconditioning

How do we determine efficient diagonal blocks?
https://science.nasa.gov/earth-science/focus-areas/earth-weather
* If we know the discretization method, information is available. —

* What if the problem’s origin / discretization scheme is unknown?

e Clustering algorithms (Big Data analytics)
|II

o"
WOrk we I I find_biocks [oenerate [find_blocks CMS [l generate CMS

“extremely expensive”

0.18
0.16

0.

e Supervariable agglomeration: ,

“stat-of-the-art” 0
“works somewhat well” 0
“sequential character makes it 0
unattractive & expensive” 0 || “ || “ || || ||
0.
il

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Block size

Time [s]
&8 8 &8 K &

g

o
N

. v AR Y

k Motivation: BIock—Jacobl Preconditioning

How do we determine efficient diagonal blocks?
https://science.nasa.gov/earth-science/focus-areas/earth-weather
* If we know the discretization method, information is available. —

* What if the problem’s origin / discretization scheme is unknown?

Clustering algorithms (Big Data analytics)
“work well”
“extremely expensive” e “Look at it”
“we have a feeling for what belongs together”
e Supervariable agglomeration:
“stat-of-the-art” X X
“works somewhat well” X
“sequential character makes it X
unattractive & expensive”

X

XX X

X X X
X X X
X X X X X X X
X X X X X X X X

e ! 1 4

Motivation: Convolutional Neural Networks (CNN)

Very efficient in detecting recurring patterns.

Pbieg
|
I ™0
l] -0 psunset
-0
5 = pa [A |0 o
° Mo —

=] o No Paog
= T o o
- [+} [+}

ol U\ > b,
. . [+} o
convolution + max pooling vec |4 o

| nonlinearity | o
I |
convolution + pooling layers fully connected layers Nx binary classification

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

8 1] 4

S

p Idea: Take matrix sparsity pattern as input for CNN

r
 We arein particular interested in the
nonzero pattern close to the main diagonal.

> 3 1 4

- ldea: Take matrix sparsity pattern as input for CNN

 We arein particular interested in the
nonzero pattern close to the main diagonal.

Convolution of dimension
(2w+1) x (2k+1) Padding of size k

> 3 1 4

- ldea: Take matrix sparsity pattern as input for CNN

 We arein particular interested in the
nonzero pattern close to the main diagonal.

* We need uniform-sized input.

* For training the CNN, we need labeled data
with block annotated.

Convolution of dimension
(2w+1) x (2k+1) Padding of size k

> 3 1 4

- ldea: Take matrix sparsity pattern as input for CNN

 We arein particular interested in the
nonzero pattern close to the main diagonal.

* We need uniform-sized input.

* For training the CNN, we need labeled data
with block annotated.

Hire Student Assistants for annotating
real-world test problems.

worker unions

Generate artificial test matrices.

Convolution of dimension
(2w+1) x (2k+1) Padding of size k

> 4 ______} 4

- ldea: Take matrix sparsity pattern as input for CNN

 We arein particular interested in the
nonzero pattern close to the main diagonal.

* We need uniform-sized input.

* For training the CNN, we need labeled data
with block annotated.

Hire Student Assistants for annotating

real-world test problems. worker unions

Generate artificial test matrices.

* 3,000 matrices of size 128x128

* w=10 Convolution of dimension
* random blocks with varying density distributions (2w+1) x (2k+1) Padding of size k

* average size of blocks is 10

> 1 1 4

Design a CNN for detecting diagonal blocks

 Kerasv. 2.1.6 based on tensorflow v. 1.8.0
* numpy backend

* Nesterov-momentum optimizer

* Feed-forward CNN with 128 layers

* More details in the paper

15t block denoises image

two two-dimensional convolutional layers with
post-batch normalization and scaled exponential

linear units (SELU)

2" block
non-standard discrete convolutions,
activation via tanh function

3rd block identifies block starts
fully-connected dense layer,
identification via argmax function

Input (21, 128, 1)
(21,128, 1)
——
Batch Norm (21,128, 1)
(21,128, 1)
Activation (21, 128, 1)
selu (21,128, 1)
2D Conv (21,128, 1)
32,525,012 = 0.02, same (21, 128, 32)
Batch Norm (21, 128, 32)
(21, 128, 32)
Activation (21, 128, 32)
selu (21, 128, 32)
2D Conv (21, 128, 32)
128, 323,12 = 0.02, same (21, 128, 128)
\
Add (21, 128, 1), (21, 128, 128)
(21, 128, 128)
Batch Norm (21, 128, 128)
(21, 128, 128)
Zero Padding (21, 128, 128)
(21, 134, 128)
2D Conv (21, 134, 128)
32,2127, valid, tanh (1,128, 32)
2D Conv (1, 128, 32)
128, 123, valid, tanh (1, 128, 128)
Flatten (1, 120, 128)
(16384)
Dense (16384)
512, sigmoid (512)
Dropout (512)
p(drop) = 0.1 (512)
Dense (512)
128, sigmoid (128)

. L v AR Y

q

Design a CNN for detecting diagonal blocks

>
W

 Kerasv. 2.1.6 based on tensorflow v. 1.8.0
* numpy backend

* Nesterov-momentum optimizer

* Feed-forward CNN with 128 layers

* More details in the paper Convolution of dimension /

Samples of different layers:
denoised image

20
0

inverse content
20

0

potential block boundaries
20

(2w+1) x (2k+1) Padding of size k

0 20 40 60 80 100 120

120

T

0 2

0 40 60 80 100
(Y FLig
He il T () o
4IO 6I0 8I0 1(I)0

0 20

120

I D AN Y

CNN training process

S n
Loss: L(yh i) =— Y > ysi*log(is) + (1= ysi) xlog(1 =)
. . . L. . =11i1=1
Training / Test distribution: 80% / 20% S .
. . . | 0.14
1 L
10.12
0.951 — Accuracy 10-1

O L 2 R Test accuracy

S —Loss 10.08

5 oo-A Test loss a3

S 0,06~ >

g .
-10.04

0.85+
_ 10.02 D
... \
N
0.8 ' ' ' : 0 ©
0 10 20 30 40 50

Epoch count

Label vector v

Prediction vector

True positives tp

e ! 1 4

CNN high-level quality analysis

Y

False positive fp

False negative fn

precision(y,y) =

tp(y,7)

tp(y,9) + fr(y,9)

tp(y,9)

recall(y,y) =

tp(y,9) + fn(y,)

precision(y,y) * recall(y,)

Fi(y,y) =2%

precision(y,y) + recall(y,)

Actual
Acc.: 0.9617 no block block precision
<= no block 68010 553 0.9919
E block 2389 5848 0.7100
recall 0.9661 0.9136 F1: 0.7990

Actual
Acc.: 0.8261 no block block precision
5 no block 62105 6458 0.9107
& block 6895 1342 0.1547
recall 0.9001 0.1721 F1: 0.1673

Actual
Acc.: 0.8695 no block block precision
= no block 65872 2691 0.9608
£ block 7328 909 0.1103
recall 0.8998 0.2525 F1: 0.1535

SN AN Y

CNN high-level quality analysis

Use the predicted blocks for a

block-Jacobi preconditioner. O v — R A
125 B X |
Compare against uniform blockings. x No preconditioner
120 X o % Supervariable blocking
lterations averaged over test data 2 X x o y — CNN blocking
(600 matrices). -% x
115/ x i
% * x
o x
i x |
= 110 X o
O x
X % "
105 - x
100 ' ! | |
0) 10 15 20 25

Block size bound

SN AN Y

CNN high-level quality analysis

9.8 isaverage block size predicted by CNN

Use the predicted blocks for a
block-Jacobi preconditioner. OO A | R A
125 B X _
Compare against uniform blockings. N | N No preconditioner
120 X o % Supervariable blocking
lterations averaged over test data 2 X x — CNN blocking
(600 matrices). -% %
g 115 :
% x
. <
2 110 B X X x =
Q) X
X % "
105 |- X
100 : = ' '
0 3 10 15 20 25

Block size bound

SN AN Y

CNN high-level quality analysis

Use the predicted blocks for a
block-Jacobi preconditioner.

Compare against uniform blockings.

Iterations averaged over test data
(600 matrices).

Next steps:

 Real data
(manually label data?)

e Other preconditioners
(ILU/ILUT?)

125

120

115

GMRES iterations
)

105

100

9.8 isaverage block size predicted by CNN

B . ")
x 1 No preconditioner
x % Supervariable blocking
i * x x — CNN blocking
X b 4
x
X
B X]
X
x X
X x
B :]
* b 4
* b 4
B x
5 10 15 20 25

Block size bound

