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Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

https://science.nasa.gov/earth-science/focus-areas/earth-weather



Motivation:	Block-Jacobi	Preconditioning

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How	do	we	determine	efficient	diagonal	blocks?

• Strongly	connected	components.	
• Variables	associated	to	same	discretization	element.
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“stat-of-the-art”
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Motivation:	Convolutional	Neural	Networks	(CNN)

Very	efficient	in	detecting	recurring	 patterns.

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Idea:	Take	matrix	sparsity	pattern	as	input	for	CNN	
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• We	are	in	particular	interested	in	the	
nonzero	pattern	close	to	the	main	diagonal.

• We	need	uniform-sized	 input.

• For	training	the	CNN,	we	need	labeled	data	
with	block	annotated.
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• 3,000	matrices	of	size	128x128
• w=10
• random	blocks	with	varying	density	distributions
• average	size	of	blocks	is	10	



Design	a	CNN	for	detecting	diagonal	blocks

• Keras v.	2.1.6	based on tensorflow v.	1.8.0
• numpy backend
• Nesterov-momentum	optimizer
• Feed-forward	CNN	with	128	layers
• More	details	in	the	paper

1st block	denoises image
two	two-dimensional	 convolutional	 layers	with	
post-batch normalization	and	scaled	exponential	
linear	units	(SELU)

2nd block	
non-standard	discrete	convolutions,	
activation	via	tanh function

3rd block	identifies	block	starts
fully-connected	dense	layer,
identification	via	argmax function
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CNN	training	process
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CNN	high-level	quality	analysis
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CNN	high-level	quality	analysis

Use	the	predicted	blocks	for	a		
block-Jacobi	preconditioner.

Compare	against	uniform	blockings.

Iterations	averaged	over	test	data
(	600	matrices).	
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Next	steps:

• Real	data
(manually	label	data?)

• Other	preconditioners
(ILU/ILUT?)

9.8	is	average	block	size	predicted	by	CNN


