ICL Lunch Talk November 2nd 2018

Machine Learning-Aided Numerical Linear Algebra: Convolutional Neural Networks for the Efficient Preconditioner Generation*

Markus **Götz,** <u>Hartwig Anzt</u>

"Machine Learning-Aided Numerical Linear Algebra: Convolutional Neural Networks for the Efficient Preconditioner Generation," accepted at ScalA'18: 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems WS at SC18.

mmm

- Jacobi method based on diagonal scaling: P = diag(A)
 - Can be used as iterative solver:

$$x^{(k+1)} = x^{(k)} + P^{-1}b - P^{-1}Ax^{(k)}$$

• Can be used as preconditioner: $\tilde{A} = P^{-1}A$, $\tilde{b} = P^{-1}b$.

$$Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$$

- Jacobi method based on diagonal scaling: P = diag(A)
 - Can be used as iterative solver:

$$x^{(k+1)} = x^{(k)} + P^{-1}b - P^{-1}Ax^{(k)}$$

• Can be used as preconditioner: $\tilde{A}=P^{-1}A$, $\tilde{b}=P^{-1}b$.

$$Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$$

- Block-Jacobi is based on block-diagonal scaling: $P=diag_B(A)$
 - Large set of small diagonal blocks.
 - Each block corresponds to one (small) linear system.
 - Larger blocks typically improve convergence.
 - Larger blocks make block-Jacobi more expensive.

Extreme case: one block of matrix size.

https://science.nasa.gov/earth-science/focus-areas/earth-weather

- Jacobi method based on diagonal scaling: P = diag(A)
 - Can be used as iterative solver:

$$x^{(k+1)} = x^{(k)} + P^{-1}b - P^{-1}Ax^{(k)}$$

• Can be used as preconditioner: $\tilde{A} = P^{-1}A$, $\tilde{b} = P^{-1}b$. $Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$

Block-Jacobi is based on block-diagonal scaling:
$$P=diaq_B(A)$$

- Large set of small diagonal blocks.
- Each block corresponds to one (small) linear system.
 - Larger blocks typically improve convergence.
 - Larger blocks make block-Jacobi more expensive.

Extreme case: one block of matrix size.

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How do we determine efficient diagonal blocks?

- Strongly connected components.
- Variables associated to same discretization element.

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How do we determine efficient diagonal blocks?

- If we know the discretization method, information is available.
- What if the problem's origin / discretization scheme is unknown?

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How do we determine efficient diagonal blocks?

- If we know the discretization method, information is available.
- What if the problem's origin / discretization scheme is unknown?
 - Clustering algorithms (Big Data analytics) "work well"
 - "extremely expensive"

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How do we determine efficient diagonal blocks?

- If we know the discretization method, information is available.
- What if the problem's origin / discretization scheme is unknown?
 - Clustering algorithms (Big Data analytics) "work well"
 - "extremely expensive"
 - Supervariable agglomeration:
 - "stat-of-the-art"
 - "works somewhat well"
 - 1. detect rows with same pattern
 - 2. accumulate to block size bound (4)

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How do we determine efficient diagonal blocks?

- If we know the discretization method, information is available.
- What if the problem's origin / discretization scheme is unknown?
 - Clustering algorithms (Big Data analytics) "work well"
 - "extremely expensive"
 - Supervariable agglomeration:
 - "stat-of-the-art"
 - "works somewhat well"
 - 1. detect rows with same pattern
 - 2. accumulate to block size bound (4)

How do we determine efficient diagonal blocks?

- If we know the discretization method, information is available.
- What if the problem's origin / discretization scheme is unknown?

0.18

0.16

0.14

0.12

0.06

0.04

0.02

[s] 0.10 BUL 0.08

- Clustering algorithms (Big Data analytics) "work well"
 - "extremely expensive"
- Supervariable agglomeration: "stat-of-the-art" "works somewhat well" "sequential character makes it unattractive & expensive"

https://science.nasa.gov/earth-science/focus-areas/earth-weather

Block size

How do we determine efficient diagonal blocks?

- If we know the discretization method, information is available.
- What if the problem's origin / discretization scheme is unknown?
 - Clustering algorithms (Big Data analytics) "work well"
 - "extremely expensive"
 - Supervariable agglomeration:
 "stat-of-the-art"
 "works somewhat well"
 - "sequential character makes it unattractive & expensive"

"we have a feeling for what belongs together"

• "Look at it"

Х

 \times

 \times

https://science.nasa.gov/earth-science/focus-areas/earth-weather

Motivation: Convolutional Neural Networks (CNN)

Very efficient in detecting recurring patterns.

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

10000

• We are in particular interested in the nonzero pattern close to the main diagonal.

• We are in particular interested in the nonzero pattern close to the main diagonal.

- We are in particular interested in the nonzero pattern close to the main diagonal.
- We need uniform-sized input.
- For training the CNN, we need labeled data with block annotated.

- We are in particular interested in the nonzero pattern close to the main diagonal.
- We need uniform-sized input.

real-world test problems.

• For training the CNN, we need labeled data with block annotated.

Hire Student Assistants for annotating

Generate artificial test matrices.

- We are in particular interested in the nonzero pattern close to the main diagonal.
- We need uniform-sized input.
- For training the CNN, we need labeled data with block annotated.

Hire Student Assistants for annotating real-world test problems.

Generate artificial test matrices.

- 3,000 matrices of size 128x128
- w=10
- random blocks with varying density distributions
- average size of blocks is 10

Design a CNN for detecting diagonal blocks

- Keras v. 2.1.6 based on tensorflow v. 1.8.0
- numpy backend
- Nesterov-momentum optimizer
- Feed-forward CNN with 128 layers
- More details in the paper
 - 1st block denoises image

two two-dimensional convolutional layers with post-batch normalization and scaled exponential linear units (SELU)

2nd block

non-standard discrete convolutions, activation via tanh function

3rd block identifies block starts fully-connected dense layer, identification via argmax function

	-			
	Input	(21, 128, 1)		
		(21, 128, 1)		
	~			
Batch Norm	(21, 128, 1)			
	(21, 128, 1)			
	1	_		
Activation	(21, 128, 1)			
selu	(21, 128, 1)			
	1	_		
2D Conv	(21, 128, 1)			
5, l2 = 0.02, same	(21, 128, 32)			
DALM	(01, 100, 20)	_		
Batch Norm	(21, 128, 32)			
	(21, 128, 32)			
Activation	(21 129 22)	_		
Activation	(21, 128, 32)	_		
selu	(21, 128, 32)			
2D Conv	(21, 128, 32)			
$r_{3} l_{2} = 0.02$ same	(21, 128, 128)			
0.02, sume	(21, 120, 120)			
	Add	(21, 128, 1), (21, 128, 128)		
		(21, 128, 128)		
		↓ ↓		
	Batch Norm	(21, 128, 128)		
		(21, 128, 128)		
		¥		
	Zero Padding	(21, 128, 128)		
		(21, 134, 128)		
		¥		
	2D Conv	(21, 134, 128)		
	32, 21x7, valid, tanh	(1, 128, 32)		
	AD G	+		
	2D Conv	(1, 128, 32)		
	128, 1x3, valid, tanh	(1, 128, 128)		
	Di	(1, 100, 100)		
	Flatten	(1, 120, 128)		
		(16384)		
	Dansa	(16294)		
	E Dense	(16384)		
	512, sigmoid	(512)		
	Dropout	(512)		
	n (dram) 0.1	(512)		
	p(arop) = 0.1	(512)		
	Dansa	(512)		
	100 of any of d	(128)		
	28 \$101000	(128)		

32, 5x5, l

128, 3x3,

Design a CNN for detecting diagonal blocks

- Keras v. 2.1.6 based on tensorflow v. 1.8.0
- numpy backend
- Nesterov-momentum optimizer
- Feed-forward CNN with 128 layers
- More details in the paper

CNN training process

Loss:
$$\mathcal{L}(y, \hat{y}) = -\sum_{s=1}^{S} \sum_{i=1}^{n} y_{s,i} * log(\hat{y}_{s,i}) + (1 - y_{s,i}) * log(1 - \hat{y}_{s,i})$$

1000

Training / Test distribution: 80% / 20%

			Actu	ıal	CNN	
Label vector y	Acc.:	0.9617	no block	block	precision	
Prediction vector \hat{y}	Pred.	no block block	68010 2389	553 5848	0.9919 0.7100	
True positives tp		recall	0.9661	0.0136	F1 • 0 7000	
False positive fp		Icean	0.9001	0.9150	F1. 0.7990	
False negative fn			Actual SVA-10			
$tn(u \ \hat{u})$	Acc.:	0.8261	no block	block	precision	
$precision(y, \hat{y}) = \frac{tp(y, y)}{tp(y, \hat{y}) + fp(y, \hat{y})}$	Pred.	no block block	62105 6895	6458 1342	0.9107 0.1547	
$tp(y, \hat{y})$		recall	0.9001	0.1721	F1: 0.1673	
$recall(y,y) = \frac{1}{tp(y,\hat{y}) + fn(y,\hat{y})}$			Actual		SVA-25	
	Acc.:	0.8695	no block	block	precision	
$F1(y,\hat{y}) = 2 * \frac{precision(y,\hat{y}) * recall(y,\hat{y})}{precision(y,\hat{y}) + recall(y,\hat{y})}$	Pred.	no block block	65872 7328	2691 909	0.9608 0.1103	
		recall	0.8998	0.2525	F1: 0.1535	

Use the predicted blocks for a block-Jacobi preconditioner.

Compare against uniform blockings.

Iterations averaged over test data (600 matrices).

10000

Use the predicted blocks for a block-Jacobi preconditioner.

Compare against uniform blockings.

Iterations averaged over test data (600 matrices).

ALC: NOT

9.8 is average block size predicted by CNN

Use the predicted blocks for a block-Jacobi preconditioner.

Compare against uniform blockings.

Iterations averaged over test data (600 matrices).

Next steps:

 Real data (manually label data?)

• Other preconditioners (ILU/ILUT?)

