
Machine	Learning-Aided	Numerical	Linear	Algebra:	
Convolutional	Neural	Networks	for	the	Efficient	Preconditioner	Generation*

Markus	Götz,	Hartwig Anzt

"Machine	Learning-Aided	Numerical	Linear	Algebra:	Convolutional	Neural	Networks	for	the	Efficient	Preconditioner	Generation,”	
accepted	at	ScalA’18:	9th	Workshop	on	Latest	Advances	in	Scalable	Algorithms	for	Large-Scale	Systems		WS	at	SC18.

ICL	Lunch	Talk
November	2nd 2018



Motivation:	Block-Jacobi	Preconditioning

• Jacobi	method	based	on diagonal	scaling:

• Can	be	used	as	iterative	solver:		

• Can	be	used	as	preconditioner:	 	 ,																										.Ã = P�1A

Ax = b , Ãx = b̃

b̃ = P�1b

P = diag(A)

x

(k+1) = x

(k) + P

�1
b� P

�1
Ax

(k)



Motivation:	Block-Jacobi	Preconditioning

• Jacobi	method	based	on diagonal	scaling:

• Can	be	used	as	iterative	solver:		

• Can	be	used	as	preconditioner:	 	 ,																										.

• Block-Jacobi is	based	on	block-diagonal	scaling:

• Large	set	of	small	diagonal	blocks.

• Each	block	corresponds	to	one	(small)	linear	system.

• Larger blocks	typically	improve	convergence.

• Larger blocks	make	block-Jacobi	more	expensive.

Extreme	case:	one	block	of	matrix	size.

Ã = P�1A

Ax = b , Ãx = b̃

b̃ = P�1b

P = diag(A)

P = diagB(A)

x

(k+1) = x

(k) + P

�1
b� P

�1
Ax

(k) https://science.nasa.gov/earth-science/focus-areas/earth-weather



Motivation:	Block-Jacobi	Preconditioning

• Jacobi	method	based	on diagonal	scaling:

• Can	be	used	as	iterative	solver:		

• Can	be	used	as	preconditioner:	 	 ,																										.

• Block-Jacobi is	based	on	block-diagonal	scaling:

• Large	set	of	small	diagonal	blocks.

• Each	block	corresponds	to	one	(small)	linear	system.

• Larger blocks	typically	improve	convergence.

• Larger blocks	make	block-Jacobi	more	expensive.

Extreme	case:	one	block	of	matrix	size.

Ã = P�1A

Ax = b , Ãx = b̃

b̃ = P�1b

P = diag(A)

P = diagB(A)

x

(k+1) = x

(k) + P

�1
b� P

�1
Ax

(k)

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

https://science.nasa.gov/earth-science/focus-areas/earth-weather



Motivation:	Block-Jacobi	Preconditioning

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How	do	we	determine	efficient	diagonal	blocks?

• Strongly	connected	components.	
• Variables	associated	to	same	discretization	element.



Motivation:	Block-Jacobi	Preconditioning

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How	do	we	determine	efficient	diagonal	blocks?	

• If	we	know	the	discretization	method,	 information	 is	available.

• What	if	the	problem’s	 origin	 /	discretization	scheme	is	unknown?



Motivation:	Block-Jacobi	Preconditioning

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How	do	we	determine	efficient	diagonal	blocks?	

• If	we	know	the	discretization	method,	 information	 is	available.

• What	if	the	problem’s	 origin	 /	discretization	scheme	is	unknown?

• Clustering	algorithms	 (Big	Data	analytics)
“work	well”
“extremely	expensive”



Motivation:	Block-Jacobi	Preconditioning

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How	do	we	determine	efficient	diagonal	blocks?	

• If	we	know	the	discretization	method,	 information	 is	available.

• What	if	the	problem’s	 origin	 /	discretization	scheme	is	unknown?

• Clustering	algorithms	 (Big	Data	analytics)
“work	well”
“extremely	expensive”

• Supervariable agglomeration:
“stat-of-the-art”
“works	somewhat	well”

1.	detect	rows	with	same	pattern
2.	accumulate	to	block	size	bound	 (4)

⇥
⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥



Motivation:	Block-Jacobi	Preconditioning

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How	do	we	determine	efficient	diagonal	blocks?	

• If	we	know	the	discretization	method,	 information	 is	available.

• What	if	the	problem’s	 origin	 /	discretization	scheme	is	unknown?

• Clustering	algorithms	 (Big	Data	analytics)
“work	well”
“extremely	expensive”

• Supervariable agglomeration:
“stat-of-the-art”
“works	somewhat	well”

1.	detect	rows	with	same	pattern
2.	accumulate	to	block	size	bound	 (4)

⇥
⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥



Motivation:	Block-Jacobi	Preconditioning

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How	do	we	determine	efficient	diagonal	blocks?	

• If	we	know	the	discretization	method,	 information	 is	available.

• What	if	the	problem’s	 origin	 /	discretization	scheme	is	unknown?

• Clustering	algorithms	 (Big	Data	analytics)
“work	well”
“extremely	expensive”

• Supervariable agglomeration:
“stat-of-the-art”
“works	somewhat	well”
“sequential	character	makes	it	

unattractive	&	expensive”



Motivation:	Block-Jacobi	Preconditioning

https://science.nasa.gov/earth-science/focus-areas/earth-weather

How	do	we	determine	efficient	diagonal	blocks?	

• If	we	know	the	discretization	method,	 information	 is	available.

• What	if	the	problem’s	 origin	 /	discretization	scheme	is	unknown?

• Clustering	algorithms	 (Big	Data	analytics)
“work	well”
“extremely	expensive”

• Supervariable agglomeration:
“stat-of-the-art”
“works	somewhat	well”
“sequential	character	makes	it	

unattractive	&	expensive”

• “Look	at	it”
“we	have	a	feeling	for	what	belongs	 together”	

⇥
⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥

⇥
⇥ ⇥ ⇥

⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥
⇥ ⇥ ⇥ ⇥



Motivation:	Convolutional	Neural	Networks	(CNN)

Very	efficient	in	detecting	recurring	 patterns.

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



Idea:	Take	matrix	sparsity	pattern	as	input	for	CNN	

0 20 40 60 80 100 120

0

20

40

60

80

100

120

• We	are	in	particular	interested	in	the	
nonzero	pattern	close	to	the	main	diagonal.



Idea:	Take	matrix	sparsity	pattern	as	input	for	CNN	

0 20 40 60 80 100 120

0

20

40

60

80

100

120

• We	are	in	particular	interested	in	the	
nonzero	pattern	close	to	the	main	diagonal.

0 20 40 60 80 100 120

0

20

Convolution	of	dimension	
(2w+1)	x	(2k+1)

.	.	.	

Padding	of	size	k



Idea:	Take	matrix	sparsity	pattern	as	input	for	CNN	

0 20 40 60 80 100 120

0

20

40

60

80

100

120

• We	are	in	particular	interested	in	the	
nonzero	pattern	close	to	the	main	diagonal.

• We	need	uniform-sized	 input.

• For	training	the	CNN,	we	need	labeled	data	
with	block	annotated.

0 20 40 60 80 100 120

0

20

Convolution	of	dimension	
(2w+1)	x	(2k+1)

.	.	.	

Padding	of	size	k



Idea:	Take	matrix	sparsity	pattern	as	input	for	CNN	

0 20 40 60 80 100 120

0

20

40

60

80

100

120

• We	are	in	particular	interested	in	the	
nonzero	pattern	close	to	the	main	diagonal.

• We	need	uniform-sized	 input.

• For	training	the	CNN,	we	need	labeled	data	
with	block	annotated.

0 20 40 60 80 100 120

0

20

Convolution	of	dimension	
(2w+1)	x	(2k+1)

.	.	.	

Padding	of	size	k

Hire	Student	Assistants	for	annotating	
real-world	test	problems.

Generate	artificial	test	matrices.

worker	unions



Idea:	Take	matrix	sparsity	pattern	as	input	for	CNN	

0 20 40 60 80 100 120

0

20

40

60

80

100

120

• We	are	in	particular	interested	in	the	
nonzero	pattern	close	to	the	main	diagonal.

• We	need	uniform-sized	 input.

• For	training	the	CNN,	we	need	labeled	data	
with	block	annotated.

0 20 40 60 80 100 120

0

20

Convolution	of	dimension	
(2w+1)	x	(2k+1)

.	.	.	

Padding	of	size	k

Hire	Student	Assistants	for	annotating	
real-world	test	problems.

Generate	artificial	test	matrices.

worker	unions

• 3,000	matrices	of	size	128x128
• w=10
• random	blocks	with	varying	density	distributions
• average	size	of	blocks	is	10	



Design	a	CNN	for	detecting	diagonal	blocks

• Keras v.	2.1.6	based on tensorflow v.	1.8.0
• numpy backend
• Nesterov-momentum	optimizer
• Feed-forward	CNN	with	128	layers
• More	details	in	the	paper

1st block	denoises image
two	two-dimensional	 convolutional	 layers	with	
post-batch normalization	and	scaled	exponential	
linear	units	(SELU)

2nd block	
non-standard	discrete	convolutions,	
activation	via	tanh function

3rd block	identifies	block	starts
fully-connected	dense	layer,
identification	via	argmax function



Design	a	CNN	for	detecting	diagonal	blocks

• Keras v.	2.1.6	based on tensorflow v.	1.8.0
• numpy backend
• Nesterov-momentum	optimizer
• Feed-forward	CNN	with	128	layers
• More	details	in	the	paper

0 20 40 60 80 100 120

0

20

0 20 40 60 80 100 120

0

20

0 20 40 60 80 100 120

0

20

0 20 40 60 80 100 120

0

20

Convolution	of	dimension	
(2w+1)	x	(2k+1)

.	.	.	

Padding	of	size	k

Samples	of	different	layers:
denoised image

inverse	content

potential	block	boundaries



CNN	training	process

0 10 20 30 40 50

Epoch count

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

L
o
ss

Accuracy

Test accuracy

Loss

Test loss

Loss:

Training	/	Test	distribution:	 80%	/	20%



CNN	high-level	quality	analysis

Label	vector

Prediction	vector

True	positives

False	positive

False	negative

CNN

SVA-10

SVA-25



CNN	high-level	quality	analysis

Use	the	predicted	blocks	for	a		
block-Jacobi	preconditioner.

Compare	against	uniform	blockings.

Iterations	averaged	over	test	data
(	600	matrices).	

0 5 10 15 20 25

Block size bound

100

105

110

115

120

125

G
M

R
E

S
 it

e
ra

tio
n
s

No preconditioner
Supervariable blocking
CNN blocking



CNN	high-level	quality	analysis

Use	the	predicted	blocks	for	a		
block-Jacobi	preconditioner.

Compare	against	uniform	blockings.

Iterations	averaged	over	test	data
(	600	matrices).	

0 5 10 15 20 25

Block size bound

100

105

110

115

120

125

G
M

R
E

S
 it

e
ra

tio
n
s

No preconditioner
Supervariable blocking
CNN blocking

9.8	is	average	block	size	predicted	by	CNN



CNN	high-level	quality	analysis

Use	the	predicted	blocks	for	a		
block-Jacobi	preconditioner.

Compare	against	uniform	blockings.

Iterations	averaged	over	test	data
(	600	matrices).	

0 5 10 15 20 25

Block size bound

100

105

110

115

120

125

G
M

R
E

S
 it

e
ra

tio
n
s

No preconditioner
Supervariable blocking
CNN blocking

Next	steps:

• Real	data
(manually	label	data?)

• Other	preconditioners
(ILU/ILUT?)

9.8	is	average	block	size	predicted	by	CNN


