
Programming Language Basics, 
Parallelism & Concurrency

Presentation by: Sam Barton, Chad 
Davidson, Matt MacNeil



Overview

● JIT (Just In Time) Compilation
● Free and Open Source
● Scientific Computing
● Designed for parallelism and distributed computation



Interaction

● Can directly call C or Fortran functions without a wrapper
● Has support for unicode
● Can perform read–eval–print loop (REPL) in an interactive session shell
● Has a source-to-source compiler that allows it to be compiled to c code for 

better cross-platform compatibility (Julia2C)



Parallel

● Generally, communication is “one-sided”
○ Target of communication is not involved

● Built on two primitives:
○ Remote References
○ Remote Calls



Remote Calls

remotecall(func, id::Integer, args…) returns Future

Function to be 
run remotely

ID of process 
executing 
function

Arguments being 
passed to 
function



Macros

● Macros may be used instead of Remote Calls
● @spawn macro will automatically choose an available processor as opposed 

to Remote Calls where process must be explicitly stated
● @everywhere macros will execute an expression on all processes
● @parallel
● @sync macro placed before an @parallel macro will wait for all processes 

to finish before the parallel region ends
● @async is similar to @spawn but only runs tasks on the local process



Example Parallel Function



Where to go for more information

If you enjoyed this presentation or just want to learn more

https://julialang.org/

http://julia-wf.readthedocs.io/zh_CN/latest/stdlib/parallel.html

https://arxiv.org/pdf/1209.5145.pdf


