Programming Language Basics,
Parallelism & Concurrency

Presentation by: Sam Barton, Chad
Davidson, Matt MacNeil

Overview

JIT (Just In Time) Compilation

Free and Open Source

Scientific Computing

Designed for parallelism and distributed computation

Interaction

Can directly call C or Fortran functions without a wrapper

Has support for unicode

Can perform read—eval—print loop (REPL) in an interactive session shell
Has a source-to-source compiler that allows it to be compiled to ¢ code for
better cross-platform compatibility (Julia2C)

Parallel

e (enerally, communication is “one-sided”

o Target of communication is not involved
e Built on two primitives:

o Remote References

o Remote Calls

Remote Calls ID of process

executing
function

[S A —

Arguments being
passed to
function

Function to be
run remotely

Macros

Macros may be used instead of Remote Calls

@spawn macro will automatically choose an available processor as opposed
to Remote Calls where process must be explicitly stated

@everywhere macros will execute an expression on all processes

(@parallel

(@sync macro placed before an (@parallel macro will wait for all processes
to finish before the parallel region ends

(@async 1s similar to (@spawn but only runs tasks on the local process

Example Parallel Function

./julia

function timing(n)

X = @parallel (+) for i=@:n
Int(rand(Bool))

end

@time timing(16~10)
26.381827 seconds
5000061817

bash> ./julia -p 4

@time timing(16°10)
13.714870 seconds
5000012856|

Where to go for more information

If you enjoyed this presentation or just want to learn more

https://julialang.org/

http://julia-wf.readthedocs.io/zh CN/latest/stdlib/parallel.html

https://arxiv.org/pdf/1209.5145.pdf

