

HANUMANTHARAYAPPA, JIALI

What is TensorFlow?

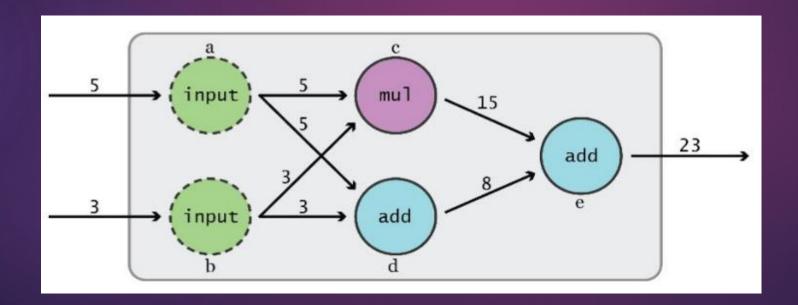
- ▶ It's a open source library for numerical computation.
- Developed and maintained by Google.
- Optimized for Deep Learning.
- TensorFlow provides primitive for defining functions on tensors and automatically computing their gradients
- It's similar to Numpy package in Python(there are a couple of differences!)

Why TensorFlow?

- Built -in support for distributed computing
 - We can train a Deep Learning network on multiple bank of GPUs.
 - Train portion of the Network on CPU and rest on GPUs
- Auto-differentiation (no more taking gradients by hand @)
- TensorFlow support Python API, like Numpy. So, learning curve is small
 - ► It's as simple as import tensoflow as tf (similar to import numpy as np)
- ► Fully compatible with Python and C++
 - ► Front-end is python and everyone loves coding in Python ©

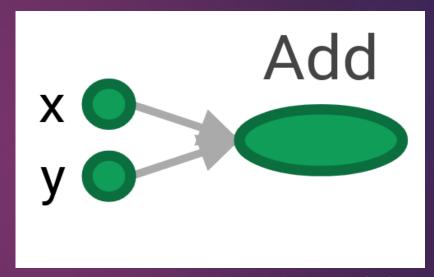
Graphs and Session

- In TensorFlow all the computations are represented in dataflow graphs
 - ► First step in computing is to assemble the computational graph
 - ► To perform computation we need to create a session and evaluate the graph inside the session



Dataflow Graphs

import tensorflow as tf a = tf.add(3, 5) Interpreted Graph from Tensorboard

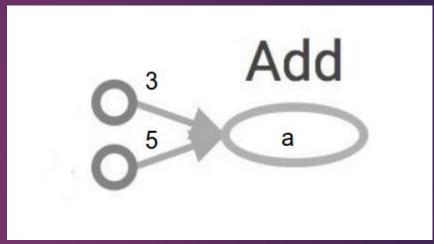


- Why x and y in the graph?
- TensorFlow automatically names the nodes when you don't explicitly name them

Continued...

import tensorflow as tf a = tf.add(3, 5)

Interpreted Graph from Tensorboard

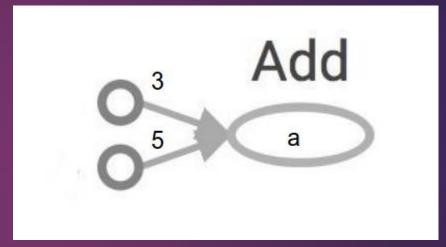


- Nodes: operators, variables, and constants
- Edges: tensors

Create a Session to evaluate graph

```
import tensorflow as tf
a = tf.add(3, 5)
sess = tf. Session()
sess.run(print a)
sess.close()
```

Interpreted Graph from Tensorboard

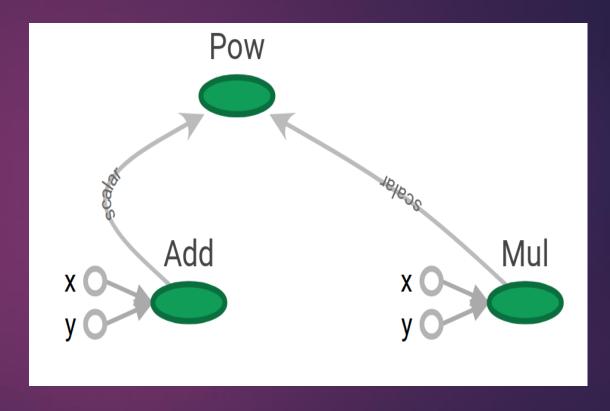


- Create a session and evaluate the graph inside the session
- Session object encapsulates the environment in which Operation objects are executed, and Tensor objects are evaluated.

More Graphs

```
import tensorflow as tf
X = 5
Y = 5
op1 = tf.add(X,Y)
op2 = tf.multiply(X,Y)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:
    op3 = sess.run(op3)
```

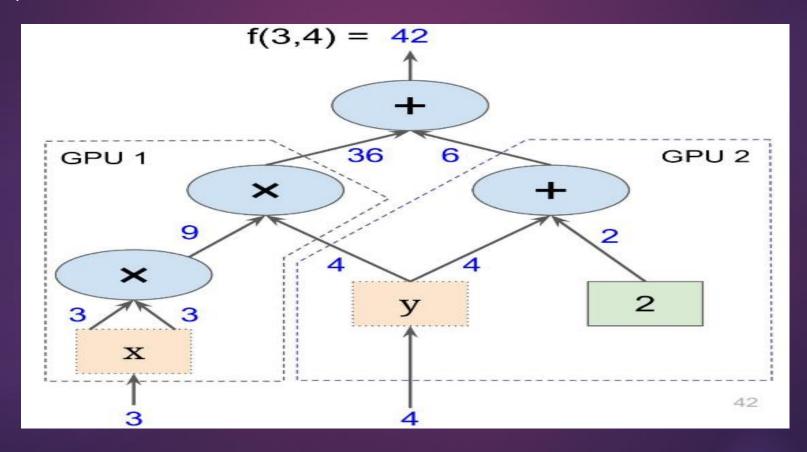
Interpreted Graph from Tensorboard



Three nodes because we have three computations

Distributed Computing

 We can break graphs into several subgraphs and run them parallelly across multiple CPUs, GPUs, or devices



CPU as the Computing Device

We can select the compute device as in the below code snippet

```
import tensorflow as tf
with tf.device('/@pu:0'):
    a = if.constant([i.0, p.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)
with tf.Session() as sess:
    print (sess.run(c))
```

GPU as the Computing Device

We can select the compute device as in the below code snippet

```
import tensorflow as tf
with tf.device('/opu:0'):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)
with tf.Session() as sess:
    print (sess.run(c))
```

GPU as the Compute Device!

Heterogenous Computing!

We can select the compute devices as in the below code snippet

```
import tensorflow as tf
with tf.device('/gpu:0'):
    a = tf.constant([i.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)
with tf.device('/cpu:0'):
                                     GPU Performs portion of the computation!
    c = tf.multiply(c, ?)
with tf.Session() as sess:
    print (sess.run(c))
                                  CPU Performs portion of the computation!
```

Continued...

```
MatMul: (MatMul): /job:localhost/replica:0/task:0/device:GPU:0
2017-12-03 10:21:39.456439: I tensorflow/core/common_runtime/placer.cc:874] MatMul: (MatMul)/job:localhost/replica:0/task:0/device:GPU:0
Mul: (Mul): /iob:localhost/replica:0/task:0/device:CPU:0
2017-12-03 10:21:39.456471: I tensorflow/core/common_runtime/placer.cc:874] Mul: (Mul)/job:localhost/replica:0/task:0/device:CPU:0
Mul/y: (Const): /job:localhost/replica:0/task:0/device:CPU:0
2017-12-03 10:21:39.456482: I tensorflow/core/common runtime/placer.cc:8741 Mul/v: (Const)/job:localhost/replica:0/task:0/device:CPU:0
b: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2017-12-03 10:21:39.456491: I tensorflow/core/common_runtime/placer.cc:874] b: (Const)/job:localhost/replica:0/task:0/device:GPU:0
a: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2017-12-03 10:21:39.456513: I tensorflow/core/common_runtime/placer.cc:874] a: (Const)/job:localhost/replica:0/task:0/device:GPU:0
         56.]
   98. 128.]]
```

CPU portion of the computation!

GPU portion of the computation!

Why Graphs?

- Save computation time
 - Only run subgraphs whose result is needed
- We can divide computation into small manageable graphs
 - ► This makes our life easier in computing the gradient
- We can exploit distributed computing
 - Scatter work across CPUs and multi-bank GPUs
- ▶ It's more intuitive to think of machine learning problems as graphs
 - ► This makes performing forward and backward propagation easier

Demo Time ©

Thank you